CSCI 1470/2470
Spring 2023

Ritambhara Singh

February 22, 2023
Wednesday

Deep Learning

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”
Recap

Building multi-layer neural networks

- Hidden layers
- What a one-hidden layer network can learn
- What a multi-layer network can learn
- Partially connected networks are useful (e.g., for images!)
- Fully connected networks are not transitionally invariant

Introduction to CNNs

Convolutional filter
Today’s goal – continue to learn about CNNs

(1) Convolution (contd.) – stride

(2) Learning convolutional filters – connection to partially connected networks

(3) Convolution in Tensorflow – padding and other considerations
What Convolution Does (Visually)

In summary:

<table>
<thead>
<tr>
<th>image</th>
<th>filter/kernel</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 0 1 3</td>
<td>1 1 1</td>
<td>-4 -3</td>
</tr>
<tr>
<td>7 1 1 0</td>
<td>0 0 0</td>
<td>3 -8</td>
</tr>
<tr>
<td>0 2 5 0</td>
<td>-1 -1 -1</td>
<td>=</td>
</tr>
<tr>
<td>0 5 1 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2D convolution process.
What Convolution Does (Mathematically)

\[V(x, y) = (I \bigotimes K)(x, y) = \sum_{m} \sum_{n} I(x + m, y + n)K(m, n) \]

The output at pixel \((x, y)\)

“Image \(I\) convolved with kernel \(K\)”

Sum over kernel columns

Sum over kernel rows

Multiply kernel value with corresponding image pixel value
What Convolution Does (Mathematically)

<table>
<thead>
<tr>
<th>x = 0</th>
<th>x = 1</th>
<th>x = 2</th>
<th>x = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = 0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>y = 1</td>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>y = 2</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>y = 3</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Filter/kernel:

<table>
<thead>
<tr>
<th>m = 0</th>
<th>m = 1</th>
<th>m = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n = 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n = 2</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Output:

<table>
<thead>
<tr>
<th>x = 0</th>
<th>x = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = 0</td>
<td>-4</td>
</tr>
<tr>
<td>y = 1</td>
<td>3</td>
</tr>
</tbody>
</table>
What Convolution Does (Mathematically)

\[V(0, 0) = (I \otimes K)(0, 0) = \sum_{m=0}^{2} \sum_{n=0}^{2} I(0 + m, 0 + n)K(m, n) \]
What Convolution Does (Mathematically)

\[V(1, 0) = (I \otimes K)(1, 0) = \sum_{m=0}^{2} \sum_{n=0}^{2} I(1 + m, 0 + n)K(m, n) \]
What Convolution Does (Mathematically)

\[
V(0, 1) = (I \otimes K)(0, 1) = \sum_{m=0}^{2} \sum_{n=0}^{2} I(0 + m, 1 + n)K(m, n)
\]
What Convolution Does (Mathematically)

\[V(1, 1) = (I \ast K)(1, 1) = \sum_{m=0}^{2} \sum_{n=0}^{2} I(1 + m, 1 + n)K(m, n) \]
What Convolution Does (In Code)

// Input: Image I, Kernel K, Output V, pixel index x,y
// Assumes K is 3x3
function apply_kernel(I, K, V, x, y)
 for m = 0 to 2:
 for n = 0 to 2:
 V(x,y) += K(m,n) * I(m+x, n+y)

Equation: \(V(x, y) = (I \otimes K)(x, y) = \sum_{m} \sum_{n} I(x + m, y + n)K(m, n) \)
Different filters = different effects

https://setosa.io/ev/image-kernels/

<table>
<thead>
<tr>
<th>Blur</th>
<th>Edge Detection / Outline Kernel</th>
<th>Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* exaggerated

* exaggerated
Stride

• We don’t just have to slide the filter by one pixel every time
• The distance we slide a filter by is called *stride*
 • All the examples we’ve seen thus far have been stride = 1
Stride in Action

Stride: 1

Stride: 2

Input

Output

http://deeplearning.net/software/theano_versions/0.9.X/tutorial/conv_arithmetic.html
Why would we want stride > 1?

Stride: 1

Stride: 2

Any connection between input and output size?
Why would we want stride > 1?

Stride: 1
Output size: 2x2
Input size: 4x4

Stride: 2
Output size: 2x2
Input size: 5x5

Larger stride turns a bigger input into the same size output
Why would we want stride > 1?

Stride: 1
Output size: 2x2
Input size: 4x4

Stride: 2
Output size: 2x2
Input size: 5x5

Larger stride turns a bigger input into the same size output
Corollary: Larger stride turns the same size input into a *smaller* output
Use this to (controllably) decrease image resolution!
OK but...where’s the *learning*?

Can you guess what do we learn in CNNs? (what are our parameters?)
Key Idea 1: Filters are *Learnable*

![Diagram](image)

1. **Image**: 2 0 1 3
 7 1 1 0
 0 2 5 0
 0 5 1 4

2. **Filter/Kernel**: 1 1 1
 0 0 0
 -1 -1 -1

3. **Output**: -4 -3
 2 -9
Key Idea 1: Filters are *Learnable*

$k_{i,j}$ are learnable parameters
Key Idea 1: Filters are **Learnable**
Detecting patterns using learned filters

Original image

Visualization of the filter on the image

Pixel representation of filter

Visualization of a curve detector filter

Multiplication and Summation = (50*30) + (50*30) + (50*30) + (20*30) + (50*30) = 6600 (A large number!)
Detecting patterns using learned filters

How to detect other patterns?
Key Idea 2: Learn *many* filters

This block of filters is called a *filter bank*
Key Idea 2: Learn *many* filters

The output is now a multi-channel image
Key Idea 2: Learn many filters

• Why are multiple filters a good idea?
 • Can learn to extract different features of the image

You will explore this more in lab!
How is convolution “partially connected?”

Fully Connected

Partially Connected
Only certain input pixels are “connected” to certain output pixels

\[
\begin{array}{cccc}
2 & 0 & 1 & 3 \\
7 & 1 & 1 & 0 \\
0 & 2 & 5 & 0 \\
0 & 5 & 1 & 4 \\
\end{array}
\quad \otimes \quad
\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1 \\
\end{array}
\quad = \quad
\begin{array}{cc}
-4 & -3 \\
2 & -9 \\
\end{array}
\]
Only certain input pixels are “connected” to certain output pixels.

<table>
<thead>
<tr>
<th>Image</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 0 1 3</td>
<td>-4 -3</td>
</tr>
<tr>
<td>7 1 1 0</td>
<td>2 -9</td>
</tr>
<tr>
<td>0 2 5 0</td>
<td></td>
</tr>
<tr>
<td>0 5 1 4</td>
<td></td>
</tr>
</tbody>
</table>

Colored dots in the input pixels represent which output pixels that input pixel contributes to.

If this were fully connected, every input pixel would have all four output colors.
Convolution in Tensorflow

```
.tf.nn.conv2d(input, filter, strides, padding)
```

Input Image (4-D Tensor)
Shape:

```
[batchSz, input_height, input_width, input_channels]
```

Can you guess the shape?

Full documentation here: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d
Output Size of a Convolution Layer

The output size of a convolution layer depends on 4 Hyperparameters:

• Number of filters, N
Output Size of a Convolution Layer

The output size of a convolution layer depends on 4 Hyperparameters:

- Number of filters, \(N \)
- The size of these filters, \(F \)

Filter size = 3
Convolution in Tensorflow

```python
tf.nn.conv2d(input, filter, strides, padding)
```

Kernel (4-D Tensor)
Shape:

\[
[f_{\text{height}}, f_{\text{width}}, \text{in_channels}, \text{out_channels}]
\]

Can you guess the shape?

Full documentation here: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d
Output Size of a Convolution Layer

The output size of a convolution layer depends on 4 Hyperparameters:

- Number of filters, N
- The size of these filters, F
- The stride, S

<table>
<thead>
<tr>
<th>2</th>
<th>0</th>
<th>3</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Stride = 2

<table>
<thead>
<tr>
<th>2</th>
<th>0</th>
<th>3</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Convolution in Tensorflow

```python
tf.nn.conv2d(input, filter, strides, padding)
```

List of ints of length 4
Represents the strides along each dimension of the input

```
[batch_stride, stride_along_height, stride_along_width, stride_along_input_channels]
```

Full documentation here:
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d
Convolution in Tensorflow

tf.nn.conv2d(input, filter, strides, padding)

Full documentation here: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d

“Problem” With Convolution

- Output of convolution is always smaller than the input
- Why might we want the output size to be the same?
 - To avoid the filter “eating at the border” of the image when applying multiple conv layers
Solution: Padding

Apply the kernel to ‘imaginary’ pixels surrounding the image

```
2 0 3 1 1
1 1 0 0 2
4 3 2 0 1
1 0 5 2 0
0 1 0 3 0
```
Solution: Padding

Apply the kernel to ‘imaginary’ pixels surrounding the image
What Values to Use For These Pixels?

[Image of a grid with values]
What Values to Use For These Pixels?

Standard practice: fill with zeroes
What Values to Use For These Pixels?

Standard practice: fill with zeroes

- Zero-valued padding pixels just result in some terms in the convolution sum being zero

\[V(x, y) = (I \otimes K)(x, y) = \sum_m \sum_n I(x + m, y + n)K(m, n) \]

- End result: equivalent to a applying a ‘masked’ version of the filter that only covers the valid pixels

This is zero for a padding pixel
Padding Modes in Tensorflow

2 available options: ‘VALID’ and ‘SAME’:

Valid

Filter only slides over “Valid” regions of the data

<table>
<thead>
<tr>
<th>2</th>
<th>0</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Same

Filter slides over the bounds of the data, ensuring output size is the “Same” as input size (when stride = 1)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
VALID Padding in Tensorflow

tf.nn.conv2d(input, filter, strides, padding='VALID')

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
VALID Padding in Tensorflow

```
tf.nn.conv2d(input, filter, strides, padding='VALID')
```
VALID Padding in Tensorflow

tf.nn.conv2d(input, filter, strides, padding='VALID')
VALID Padding in Tensorflow

tf.nn.conv2d(input, filter, strides, padding='VALID')

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
We already tried this! (reduced output size)

"VALID"
Stride = 1
SAME Padding in Tensorflow

tf.nn.conv2d(input, filter, strides, padding='SAME')

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
SAME Padding in Tensorflow

```python
tf.nn.conv2d(input, filter, strides, padding='SAME')
```
SAME Padding in Tensorflow

```
tf.nn.conv2d(input, filter, strides,
             padding='SAME')
```
SAME Padding in Tensorflow

tf.nn.conv2d(input, filter, strides, padding='SAME')

![Diagram](image.png)
SAME padding Example (Try it as HW)

2 0 3 1
1 1 0 0
1 0 2 0
1 0 1 2

“Same” Stride = 1

1 0 -1
2 0 -2
1 0 -1

= -1 -1 -1 6
-2 0 1 5
-1 -1 -1 5
0 -1 -4 4
Convolution in Tensorflow

```python
tf.nn.conv2d(input, filter, strides, padding)
```

The mode of padding to use (String)
Either “Valid” or “Same”
Case-insensitive

Full documentation here:
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d
Output Size of a Convolution Layer

The output size of a convolution layer depends on 4 Hyperparameters:

- Number of filters, N
- The size of these filters, F
- The stride, S
- The amount of padding, P

Given this information, how do we calculate the output size of the layer?
Output Size of a Convolution Layer

Suppose we know the number of filters, their size, the stride, and padding \((n,f,s,p)\).

Then for a convolution layer with input dimension \(w \times h \times d\), the output dimensions \(w' \times h' \times d'\) are:

\[
\begin{align*}
 w' &= \frac{w - f + 2p}{s} + 1 \\
 h' &= \frac{h - f + 2p}{s} + 1 \\
 d' &= n
\end{align*}
\]
Output Size for “VALID” Padding

\[w' = \frac{w - f + 2p}{s} + 1 \]

Let \(w = 4 \)

\[w' = \frac{4 - 3 + 2 \cdot 0}{1} + 1 = 1 + 1 = 2 \]

num filters \(n = 1 \)
filter size \(f = 3 \)
stride \(s = 1 \)
padding \(p = 0 \)
Output Size for “VALID” Padding

\[w' = \frac{w - f + 2p}{s} + 1 \]

- num filters \(n = 1 \)
- filter size \(f = 3 \)
- stride \(s = 1 \)
- padding \(p = 0 \)
Output Size for “VALID” Padding

\[w' = \frac{w - f + 2p}{s} + 1 \]

- num filters \(n = 1 \)
- filter size \(f = 3 \)
- stride \(s = 1 \)
- padding \(p = 0 \)
Output Size for “VALID” Padding

\[w' = \frac{w - f + 2p}{s} + 1 \]

num filters \(n = 1 \)
filter size \(f = 3 \)
stride \(s = 1 \)
padding \(p = 0 \)
Output Size for “VALID” Padding

\[w' = \frac{w - f + 2p}{s} + 1 \]

num filters \(n = 1 \)
filter size \(f = 3 \)
stride \(s = 1 \)
padding \(p = 0 \)

\[w' = 2 \]

\[w = 4 \]
Output Size for “SAME” Padding

\[w' = \frac{w - f + 2p}{s} + 1 \]

Let \(w = 4 \)

\[w' = \frac{4 - 3 + 2 \cdot 1}{1} + 1 \]

\[= 3 + 1 = 4 \]

num filters \(n = 1 \)

filter size \(f = 3 \)

stride \(s = 1 \)

padding \(p = 1 \)

*Chosen so output size is the same.
Output Size for “SAME” Padding

\[
w' = \frac{w - f + 2p}{s} + 1
\]

- num filters \(n = 1 \)
- filter size \(f = 3 \)
- stride \(s = 1 \)
- padding \(p = 1 \)

*Change in output size is the same.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(w = 4 \)

\(w' = 4 \)
Output Size for “SAME” Padding

\[w' = \frac{w - f + 2p}{s} + 1 \]

- num filters \(n = 1 \)*
- filter size \(f = 3 \)*
- stride \(s = 1 \)*
- padding \(p = 1 \)*

*Chosen so output size is the same

\[w = 4 \]
\[w' = 4 \]
Output Size for “SAME” Padding

\[w' = \frac{w - f + 2p}{s} + 1 \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- num filters \(n = 1 \)
- filter size \(f = 3 \)
- stride \(s = 1 \)
- padding \(p = 1 \)

*Chosen so output size is the same.

![Diagram](image)

\(w = 4 \)

\(w' = 4 \)
Output Size for “SAME” Padding

\[w' = \frac{w - f + 2p}{s} + 1 \]

num filters \(n = 1 \)
filter size \(f = 3 \)
stride \(s = 1 \)
padding \(p = 1 \)

Chosen so output size is the same.
Convolution in Tensorflow

\[
\text{tf.nn.conv2d(input, filter, strides, padding)}
\]

- **Input Image** (4-D Tensor)
- **Filter/Kernel** (4-D Tensor)
- **Strides along each dimension**
- **Type of Padding** (String “Valid” or “Same”)

Full documentation here: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d
Application to Real World Data (MNIST)

Should be of shape (batch_sz, 28, 28, 1) for MNIST
inputs = MNIST_image_batch

Sets up a 5x5 filter with 1 input channels and 16 output channels
self.filter = tf.Variable(tf.random.normal([5, 5, 1, 16], stddev=0.1))

Convolves the input batch with our defined filter
conv = tf.nn.conv2d(inputs, self.filter, [1, 2, 2, 1], padding="SAME")
Application to Real World Data (CIFAR)

Should be of shape (batch_sz, 32, 32, 3) for CIFAR10
inputs = CIFAR_image_batch

Sets up a 5x5 filter with ? input channels and 16 output channels
self.filter = tf.Variable(tf.random.normal([?, ?, ?, ?], stddev=0.1))

Convolves the input batch with our defined filter
conv = tf.nn.conv2d(? ,?, ?,?)
Application to Real World Data (CIFAR)

Should be of shape (batch_sz, 32, 32, 3) for CIFAR10
inputs = CIFAR_image_batch

Sets up a 5x5 filter with 3 input channels and 16 output channels
self.filter = tf.Variable(tf.random.normal([5, 5, 3, 16], stddev=0.1))

Convolves the input batch with our defined filter
conv = tf.nn.conv2d(inputs, self.filter, [1, 2, 2, 1], padding="SAME")
2D Convolution for 3D Image

See also: Understanding Convolution by hand vs TensorFlow
Recap

Filters/Kernels and Stride

Learning filters

CNNs are partially connected networks

Tensorflow conv2d function

Padding

Application to MNIST/CIFAR