Start thinking about your course project!

CSCl 1470/2470
Spring 2023

Ritambhara Singh

March 06, 2023
Monday

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”

https://openai.com/dall-e-2/

Review: Bigram Language Model Architecture

inpu predicti
t'f'he” ol “dog”

“ d 0 g ” “barked”
“barked” “loudly”
“The” «“ c at”

“ C at” “meowed”
“meowed” “softly”

https://kb.rspca.org.au/knowledge-base/what-animal-welfare-problems-are-associated-with-dog-breeding/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Review: Complete Trigram Language Model

inpu
“The” “dog”
“dog” “was”
“The” “cat” “What is the tradeoff?”
~a wise student
“Cat” “was”
y SN _predicti
rooanviiity ory ”
1 2 of was
2 3 Embedding each next “barking”
> LOOkup > Z g 0 - word g “ ”
1 > + Concat given was
5 3 previous “meowing”

https://kb.rspca.org.au/knowledge-base/what-animal-welfare-problems-are-associated-with-dog-breeding/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

Size of Feed Forward bigram Model

Let’s look at bigram model and count the number of

weights.
inputs prediction
“The” «“ d 0 g 9
“ d 0 g” “barked”
“barked” “loudly”
“The” g “cat”
“ C at” “meowed”
“meowed” “softly”

Size of Feed Forward bigram Model

To preform embedding lookup on our entire batch, we just need one
embedding matrix of size: (vocab_sz, embedding sz)

inputs

“The”

“dog”

“barked”

“The”

(13 7

cat

“meowed”

\/

| Embedding

Lookup

embedding_sz

| Embedding of each

word in batch

batch sz

Size of Feed Forward bigram Model

What size do we need the linear layer to be in order to map:
(batch_sz, embedding sz) x (???, ???) — (batch_sz, vocab_sz)

2??
embedding sz vocab sz

batch_sz

batch sz

Size of Feed Forward bigram Model

What size do we need the linear layer to be in order to map:
(batch_sz, embedding sz) x (???, ???) — (batch_sz, vocab_sz)

vocab_sz

embedding sz vocab sz

batch_sz
embedding sz

batch sz

Size of Feed Forward N-gram Model

So what happens in the N-gram case?

inputs
“The” “at”
“dog” “the”
“barked” “cars”
“The” “all” .
“cat” “the”
“meowed” “furniture”
\ Y J

(N-1) words

Embedding
Lookup +
Concat

prediction

Probability of
each next word
given previous

“th e ”

“cars”

11 7

on

“the b

“furnitur

”
e

6 nn??

m

Size of Feed Forward N-gram Model

Embedding lookup + Concatenation still requires only one
embedding matrix of size: (vocab_sz, embedding sz)

inputs
“The” “at”
“dog ” “the”
“barked” “cars”
“The” “all”
“Cat” “the”
“meowed” “furniture”
\ }
|

(N-1) words

Embedding
Lookup +
Concat

(N-1) x embedding sz

\/

Concatenated embeddings of each
sequence of (N-1) words in the batch

batch sz

batch sz

Size of Feed Forward N-gram Model

But what happens to our feed forward layer?

P 2]
(N-1) x embedding sz 22!

vocab sz

11

batch sz

batch sz

[[Can we see the problem now? |
Size of Feed Forward N-gram Model

It needs to be size: ((N-1) x embedding sz, vocab sz)
For every word, we add (embedding sz x vocab _sz) more weights!

vocab sz

(N-1) x embedding sz vocab sz

(N-1) x embedding sz
batch_sz

12

Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the
linear layer becomes far too large.

Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the
linear layer becomes far too large.

2. Using a fixed N creates problems with the flexibility of our model.

Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

For example, we can see that at some parts of the sentence below, smaller
N-gram models should be sufficient to make predictions:

“The dog barked at one of the cats.”

(“The”, “dog” N
“barked”

15

https://kb.rspca.org.au/knowledge-base/what-animal-welfare-problems-are-associated-with-dog-breeding/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of
words may make it impossible to have any idea what should come next.

“The dog barked at one of the cats.”

(“at”, “One”, “Of?’ “the” N
222

16

https://kb.rspca.org.au/knowledge-base/what-animal-welfare-problems-are-associated-with-dog-breeding/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of
words may make it impossible to have any idea what should come next.

“The dog barked at one of the cats.”

We want our model to recognize these patterns and dynamically adapt
how it makes a prediction based on context.

17

« . Any‘;o:.;
Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the
linear layer becomes far too large.

2. Using a fixed N creates problems with the flexibility of our model.

We need a solution that is both computationally cheap and more
dynamic in terms of its memory of previously seen words.

18

New Approach

Let’s revisit the bigram model and see several iterations of prediction

using a bigram model:

“dog”

Bigram
Model

A

“The”

15 7

was

“barking”

4

Bigram
Model

Bigram
Model

”

“dog

19

New Approach

ldeally, we would like to be able to keep “memory” of what

words occurred in the past.

“dog”

Any ideas?

15 7

was

“barking”

Bigram
Model

4

A

Bigram
Model

Bigram
Model

“The”

”

“dog

20

New Approach

What if we sequentially passed information from our previous
bigram block into our next block?

“dog” “waS” “barking”

Bigram Bigram Bigram
---------------------------------- > & o o

Model Model Model

“The” “dog” “was 7

21

New Approach

If we follow the information flow, we see that when predicting

“barking”, we have some way of knowing that “dog” was
previously observed:

“dog”

Bigram
Model

A

“The”

——————————

“was” “barking”
Bigram | > Bigram
Model Model
“dog” “waS”

22

New Approach

In fact, we even have a way of knowing that “The” was

observed!
“dog” “waS” “barking”
Bigram Bigram > Bigram
Model - Model Model
“The” “dog” “waS”

23

New Approach

We can represent this relationship using
only one bigram block and connection that
feeds from the output of the model back
into the input.

We call this connection a recurrent
connection.

We call the previous representation the
“unrolled” representation.

prediction

Bigram
Model

input

Different views of recurrent models

Recurrent view

prediction

A

Bigram
Model

input

“dog”

Bigram
Model

“The ”

Unrolled view

“was”

Bigram
Model

“dog”

“barking”

A

Bigram .

Model

A

“was ”

25

Recurrent Neural Network (RNN)

Recurrent Neural Networks are networks in the form of a directed
cyclic graph.

They pass previous state information from previous computations to
the next.

They can be used to process sequence data with relatively low model
complexity when compared to feed forward models.

The block of computation that feeds its own output into its input is
called the RNN cell.

Let’s see how we can build one!

. state for (“the”)
RNN Cell Architecture

RNN attime t

At each step of our RNN, we
will get an input word, and a

state vector from the previous
cell.

Previous State s_,

Embedding of word x,

!

“dog

” 27

state for (“the”)

RNN Cell Architecture

RNN attime t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

We then concatenate the
embedding and state vectors.

Embedding of word x, Previous State s_,

7

“dog

RNN Cell Architecture

RNN at time t
At each step of our RNN, we
will get an input word, and a Current State s,
state vector from the previous *
cell.

FC

We then concatenate the s
embedding and state vectors.
We use a fully connected layer
to Compute the next state Embedding of word x, | Previous State s

7

“dog

“was 7

RNN Cell Architecture

T RNN at time t

At each step of our RNN, we SUERYETO:

will get an input word, and a Current State s,
state vector from the previous *

cell.

We then concatenate the FC, FC,
embedding and state vectors.

We use a fully connected layer

to Compute the next state Embedding of word x, | Previous State s

We use another connected
layer to get the output.

7

“dog

RNN Cell Architecture

T RNN at time t

We can represent the
RNN in with the
following equations:

St = P((et»St—1)Wr + b;)

O = J(StWO + bo)

Output o,

T

FC,

Current State S,

A

FC_

Embedding of word x,

Previous State s_,

!

31

RNN Cell Architecture

T RNN at time t

We can represent the
RNN in with the
following equations:

St = P((et»St—1)Wr + b;)

O = J(StWo + bo)

Any questions?

?92

Output o,

T

FC,

Current State S,

A

FC_

Embedding of word x,

Previous State s_,

?-

!

32

RNN Cell Architecture

We can represent the
RNN in with the
following equations:

This brings up an immediate question: what is s¢?

Typically, we initialize sy to be a vector of zeros

St = P((et»st—1)Wr + b;)

(i.e. “initially, there is no memory of any previous
words”)

O = J(StWo + bo)

33

Training RNNs

We can calculate the cross entropy loss just as before since for any

sequence of input words (xl, S xt), we know the true next
word

(0 (o) (0

) RNN R RNN - . RNN LOSS 0] X
>0 Cell Cell tee Cell (00 X11)
X X X

Training RNNs

But what happens when we differentiate the loss and backpropagate?

RN

o
ow

O

LoSS (0, Xiyq)

35

Training RNNs

Not only do our gradients for o, depend on x_, but also on all of the
previous inputs.

We call this backpropagation through time.

Or 0[2 (ic\
| RNN | RNN RNN % loss(o.. x
S Cell Cell l ¢ 4 Cell SW (t) t+1)
X X X

1 2 t

36

Tra | n | n g R N N S But at what point do we stop and calculate the loss/update?

With this architecture, we can run the RNN cell for as many steps as we
want, constantly accumulating memory in the state vector.

or OIZ 010,999
s — - RNN . RNN L. RNN o
0 Cell Cell Cell —

X X X

1 2 10,000

37

Training RNNs

Solution: We define a new hyperparameter called window sz.
We now chop our corpus into sequences of words of size window sz

The new shape of our data should be:
(batch_sz, window sz, embedding sz)

Each example in our batch is a “window” of window sz many words.
Since each word is represented as an embedding sz, thatis the last
dimension of the data.

Training RNNs

Now that every example is a window or words, we can run the RNN till

the end of that window, and compute the loss for that specific window
and update our weights

O{l 0[2 0window_sz-l
< RNN | RNN L RNN
0 Cell Cell Cell

X X

1 2 window sz-1

Any questions?

Does RNN fix the limitations of the N-gram ? 5?2

model?

1. Number of of weights not dependent on N

2. State gives flexibility to choose context
from near or far

“The dog was barking at one of the cats.”

“dog” “waS” “barking”

RNN RNN RNN
cell cell cell

“The” “dog” “was”

&)

=))

prediction

RNN cell

input

40

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops:

prev_state = Zero vector

for 1 from @ to window sz:
state _and input = concat(inputs[i], prev_state)
current state = fc state(state and input)
outputs[i] = fc_output(current state)
prev_state = current _state

return outputs

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

N\

The size of our output vectors

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

/

The activation function to be used in the FC
layers inside of the RNN Cell

Any intuition why we would want
return_sequences to be TRUE?

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

/

°f °f 7"“““—5“ « |If True: calling the RNN on an input sequence
returns the whole sequence of outputs + final

g — 2’;:‘,‘ %2” IR '?:Zﬁ' state output
 |f False: calling the RNN on an input sequence

I I [returns just the final state output (Default)

X3 X2 xwindow_sz -1

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

Usage:
RNN = SimpleRNN(10) # RNN with 16-dimensional output vectors
Final output = RNN(inputs) # inputs: a [batch sz, seq length, embedding sz]| tensor

46

Any questions?

RNNs in Tensorflow

inputs: a [batch_ sz,
inputs = np.random.random([32, 10, 8]).astype(np.float32) seq_length, embedding sz]
simple_rnn = tf.keras.layers.SimpleRNN(4) tensor

output = simple_rnn(inputs)

Go to www.menti.com and use the code 8305 9036

What is the size of
a) output
?
simple rnn = tf.keras.layers.SimpleRNN (4, b) whole_sequence_output:
return sequences=True)

whole sequence output = simple rnn (inputs)

47

RNNs are a marked improvement
over previous language models
we’ve seen

But what are the implications
when language models get really
good?

Like really, really, really good

GPT-3

GPT-3, explained: This new language Al is
uncanny, funny — and a big deal

Computers are getting closer to passing the Turing Test.

By Kelsey Piper | Aug 13,2020, 9:50am EDT

f ¥ (7 suare

~‘ ‘“\\‘/ A - — - 4

—
=

OpenAl co-founder and chair Greg Brockman, OpenAl co-founder and CEO Sam Altman, and TechCrunch news editor Frederic

Lardinois during TechCrunch Disrupt San Francisco 2019. | Steve Jennings/Getty Images for TechCrunch

51

GPT-3

Background:

- Attention- and transformer-based model (We’ll be discussing the
details of these models next week in class, so stay tuned!)
- First Described by OpenAl in May 2020

GPT-3

For now, what you need to know is:

- GPT-3 represents the cutting edge of text generation
- Given a prompt phrase, it will produce scarily good continuations of

the writing

| Marv the sarcastic chat bot

Bl Conversation Generation

Prompt

You: What is the meaning of life?

Marv: I'm not sure. I'll ask my friend Google.
You: What time is it?

Marv:

Sample response

It's always 5:00 somewhere. -

GPT-3

For now, what you need to know is:

- GPT-3 represents the cutting edge of text generation
- Given a prompt phrase, it will produce scarily good continuations of

the writing

Prompt

Write a restaurant review based on these notes:

Name: The Blue Wharf

Lobster great, noisy, service polite, prices good.
GPT-3 can also produce text
that mimics the
writing/speech styles of some
famous people.
Examples here

Review:

Sample response

The Blue Wharf is a great place to go for a lobster dinner. The service is
polite and the prices are good. The only downside is that it is a bit noisy.

https://machinelearningknowledge.ai/openai-gpt-3-demos-to-convince-you-that-ai-threat-is-real-or-is-it/

OpenAl thinks GPT-3 could be dangerous. Why?

- Impacts of fake news and bot networks in the 2016 US elections
- What if fake news didn’t even have to be written by humans?

OpenAl thinks GPT-3 could be dangerous. Why?

- Impacts of fake news and bot networks in the 2016 US elections
- What if fake news didn’t even have to be written by humans?
- Could this significantly undermine trust in written sources?

OpenAl thinks GPT-3 could be dangerous. Why?

- Impacts of fake news and bot networks in the 2016 US elections
- What if fake news didn’t even have to be written by humans?
- Could this significantly undermine trust in written sources?

OpenAl will not make GPT3 open source— instead, they have
released an API and limits the number of people allowed to try the
actual model.

There’s already been some concerning GPT-3 usage:

A college student used GPT-3 to write fake
blog posts and ended up at the top of Hacker
News

Kim Lyons - 8/16/2020

A robot wrote this entire article. Are you
scared yet, human?
GP1-3

We asked GPT-3, OpenAl's powerful new language generator, to
write an essay for us from scratch. The assignment? To
convince us robots come in peace

by
theguardian.com

58

Reca p Bl | Size of weights dependent on N I

prediction
Limitations of N-gram I Limited Flexibility I T
models
I Recurrent connection can help I i
Bigram L
I RNN cell architecture I Model
RNNs

I Backprop through time I |

input
RNNs in Tensorflow I

https://kb.rspca.org.au/knowledge-base/what-animal-welfare-problems-are-associated-with-dog-breeding/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

