CSCI 1470/2470 Spring 2023

Ritambhara Singh

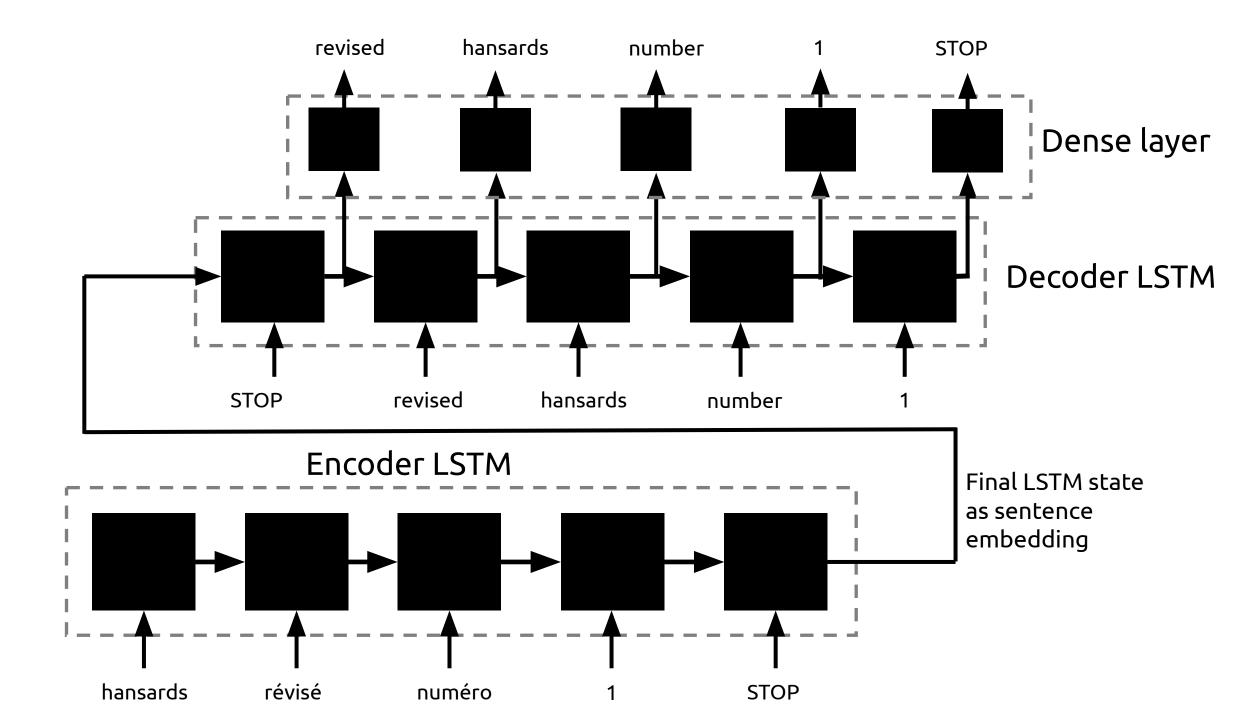
March 13, 2023 Monday

Deep Learning

DALL-E 2 prompt "a painting of deep underwater with a yellow submarine in the bottom right corner"

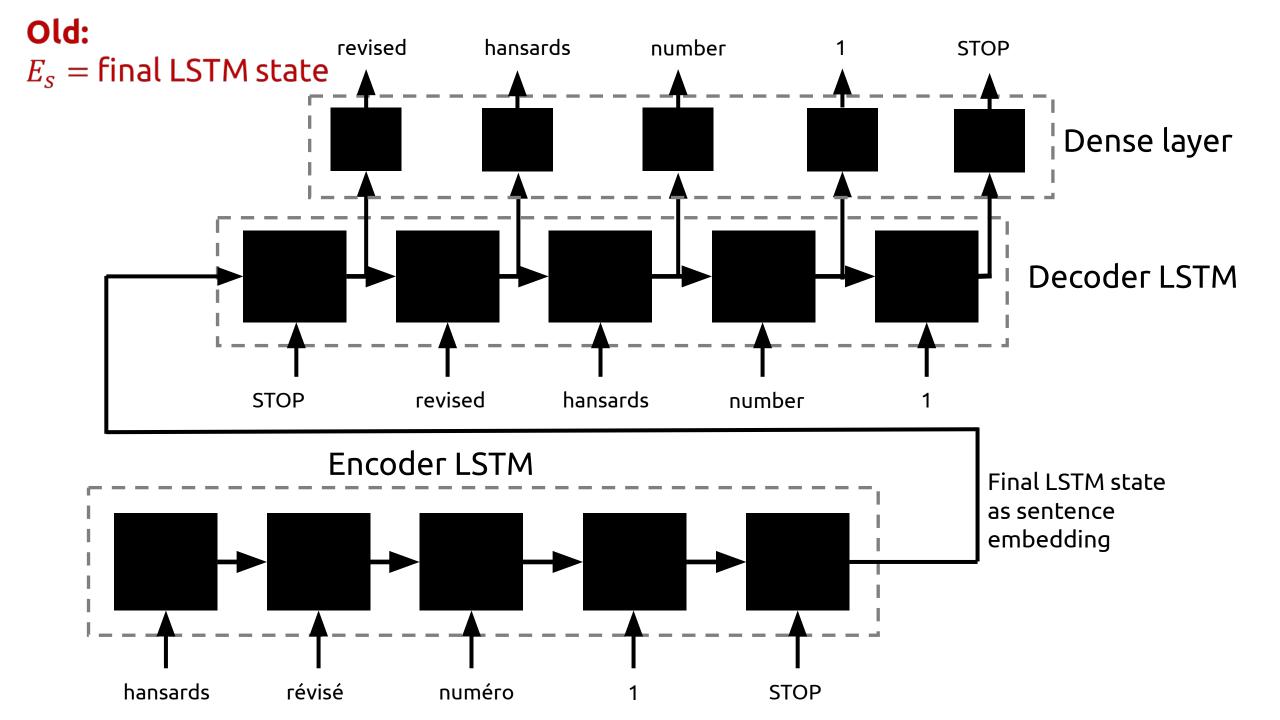
Review: seq2seq Models

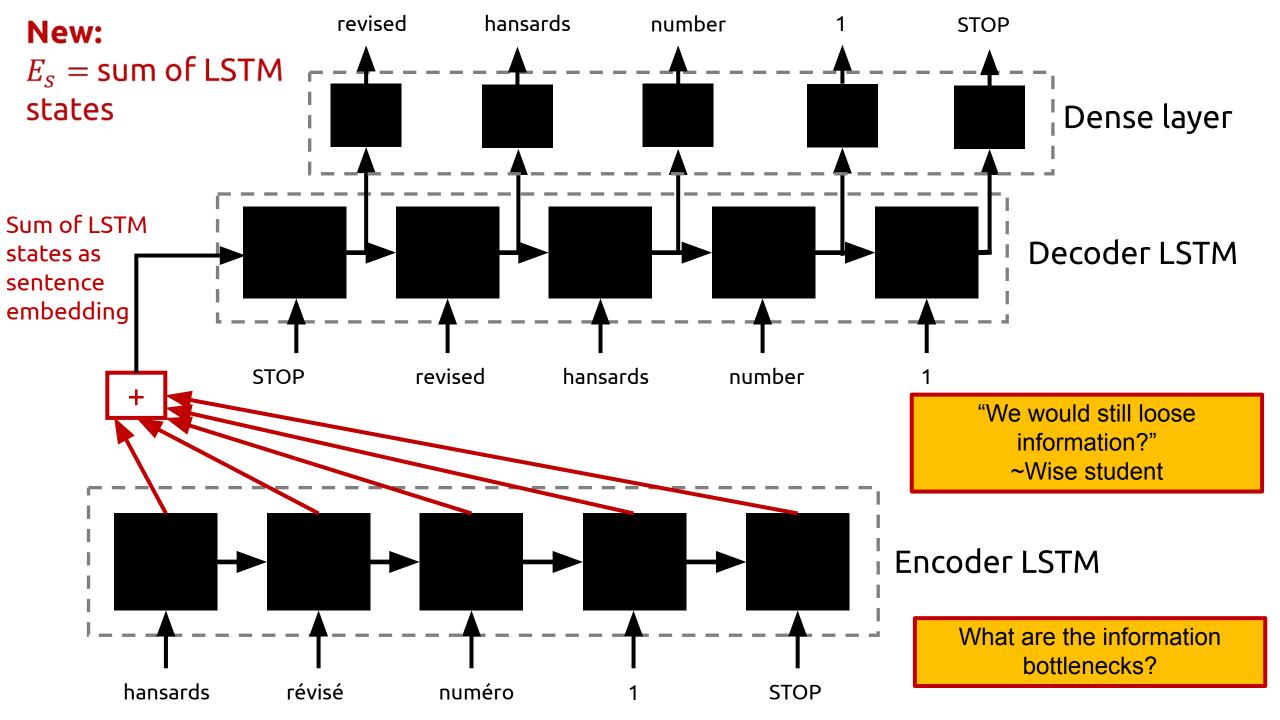
• Last time, we saw an encoder-decoder architecture for sequence-to-sequence learning



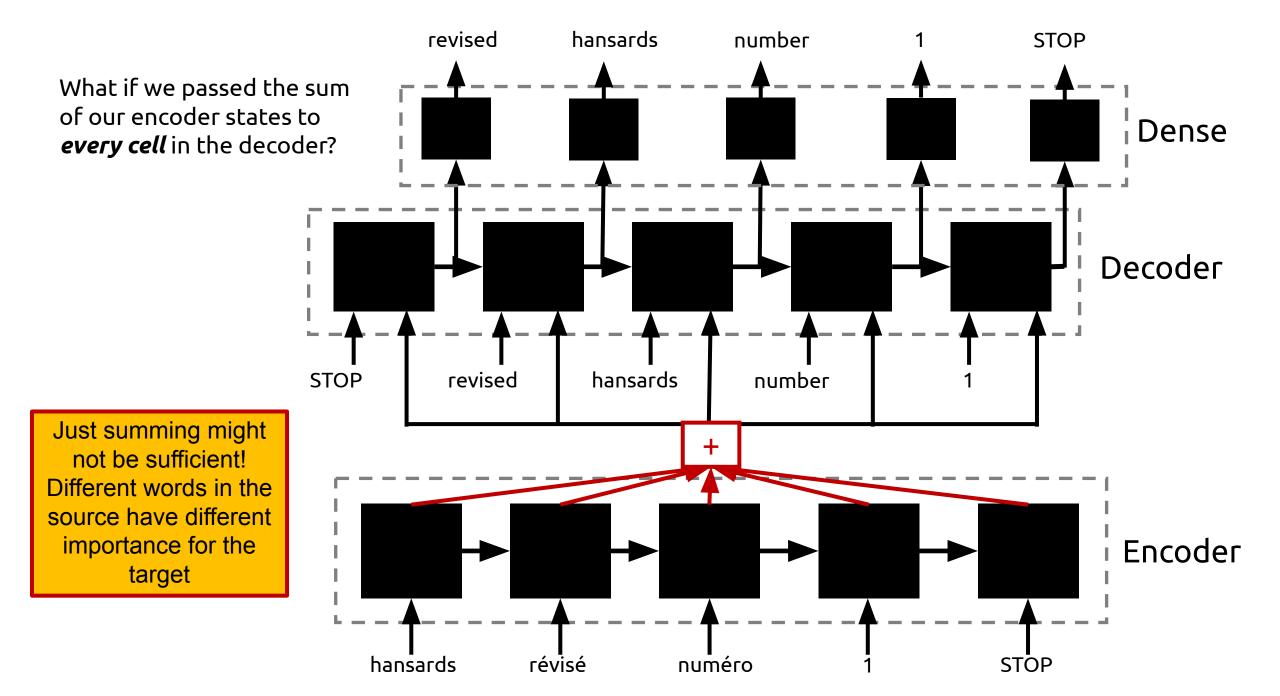
Review: seq2seq Models

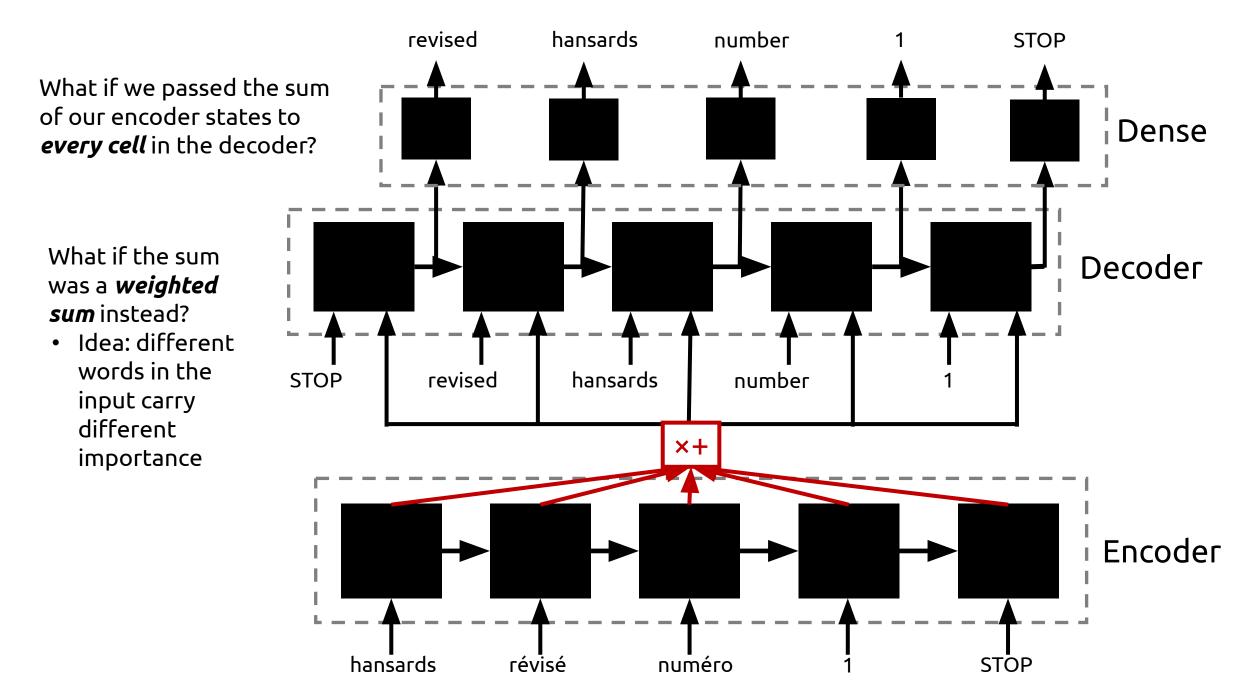
- Last time, we saw an encoder-decoder architecture for sequence-to-sequence learning
- We also saw how, instead of initializing the decoder with the final state of the encoder, we could use the sum of all encoder states

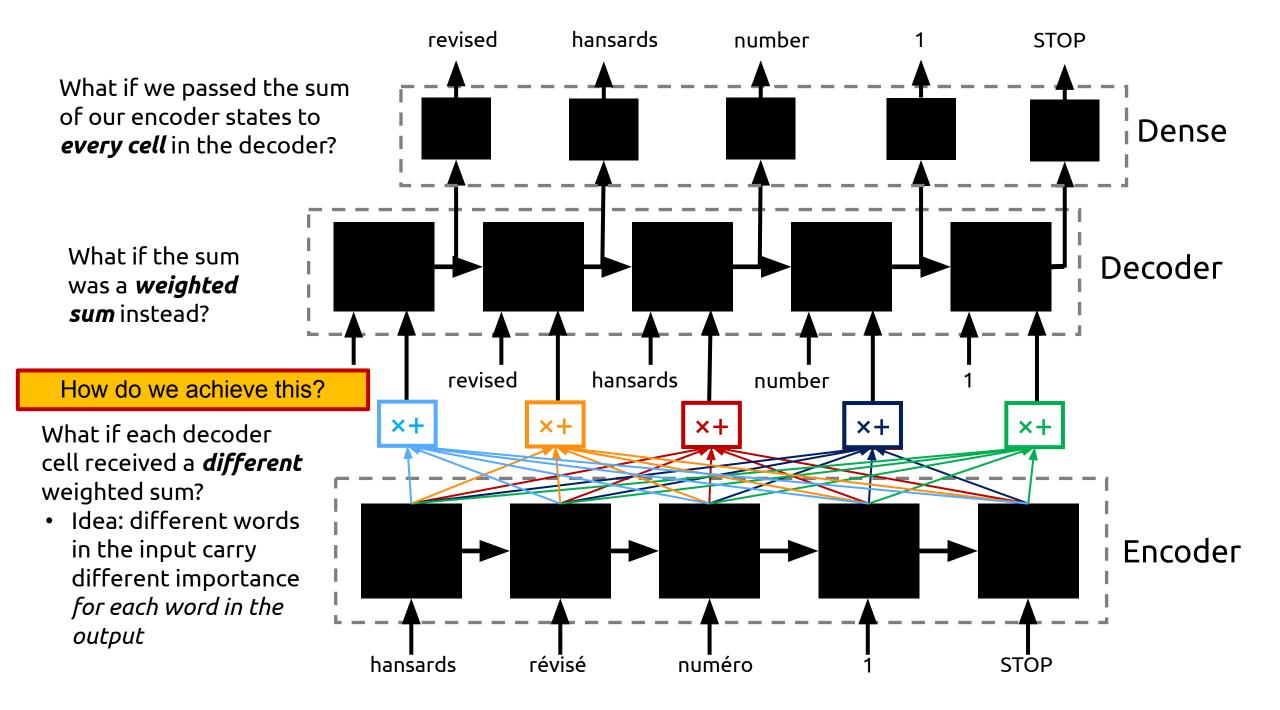




What if the decoder LSTM forgets the sentence embedding?







"Attention"

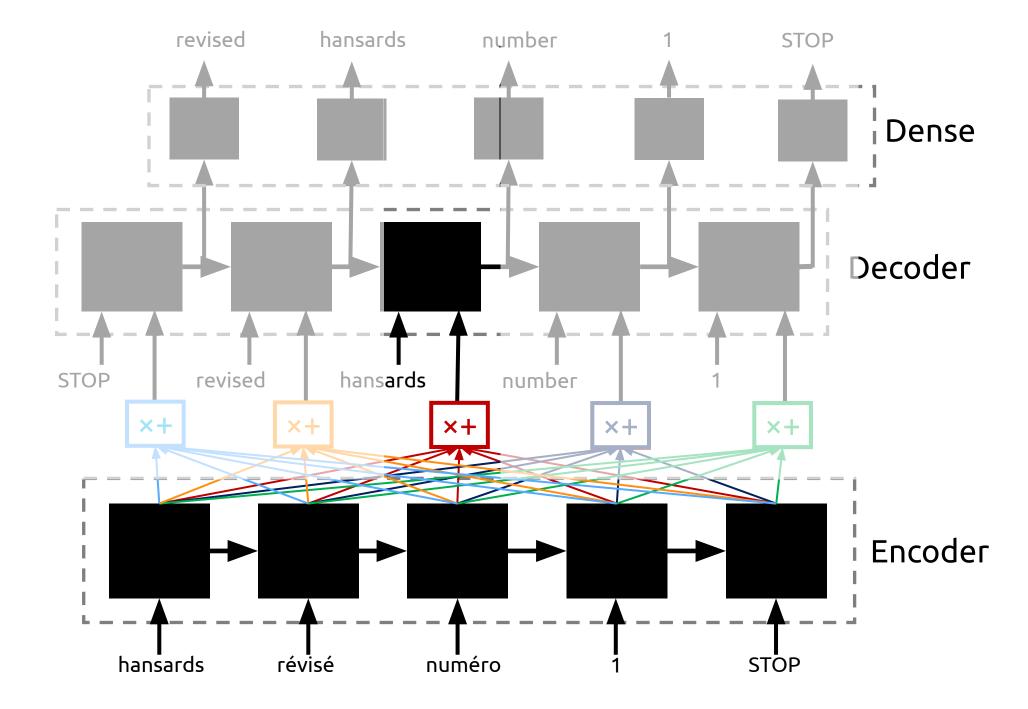
This idea of passing each cell of the decoder a weighted sum of the encoder states is called *attention*.

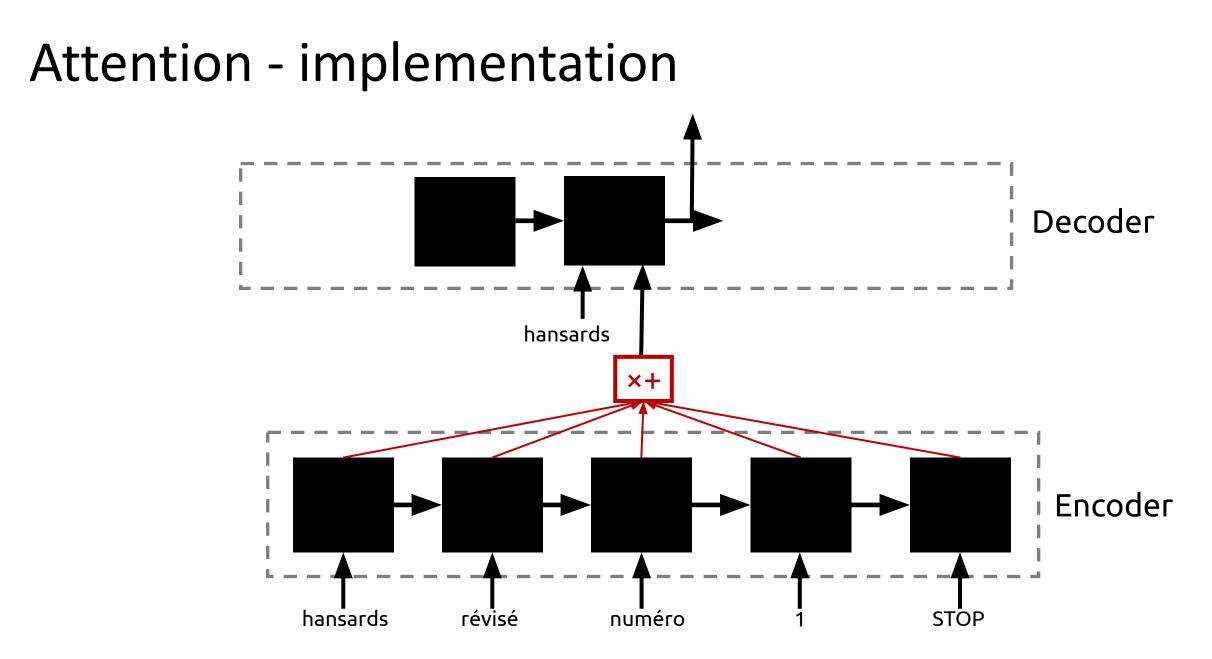
• Different words in the output "pay attention" to different words in the input

"Attention" - intuition

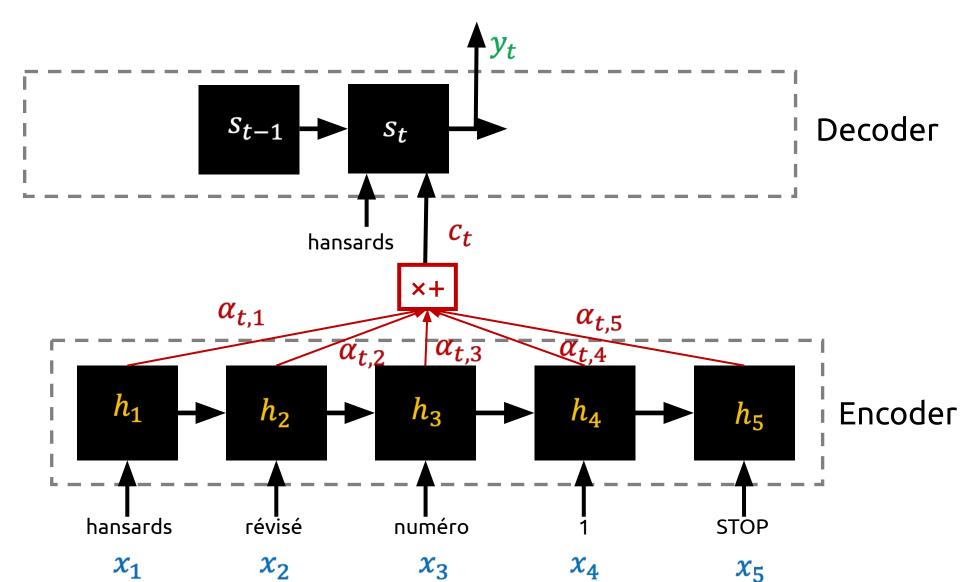
"Park"

How about we let model learn what is relevant for a particular output

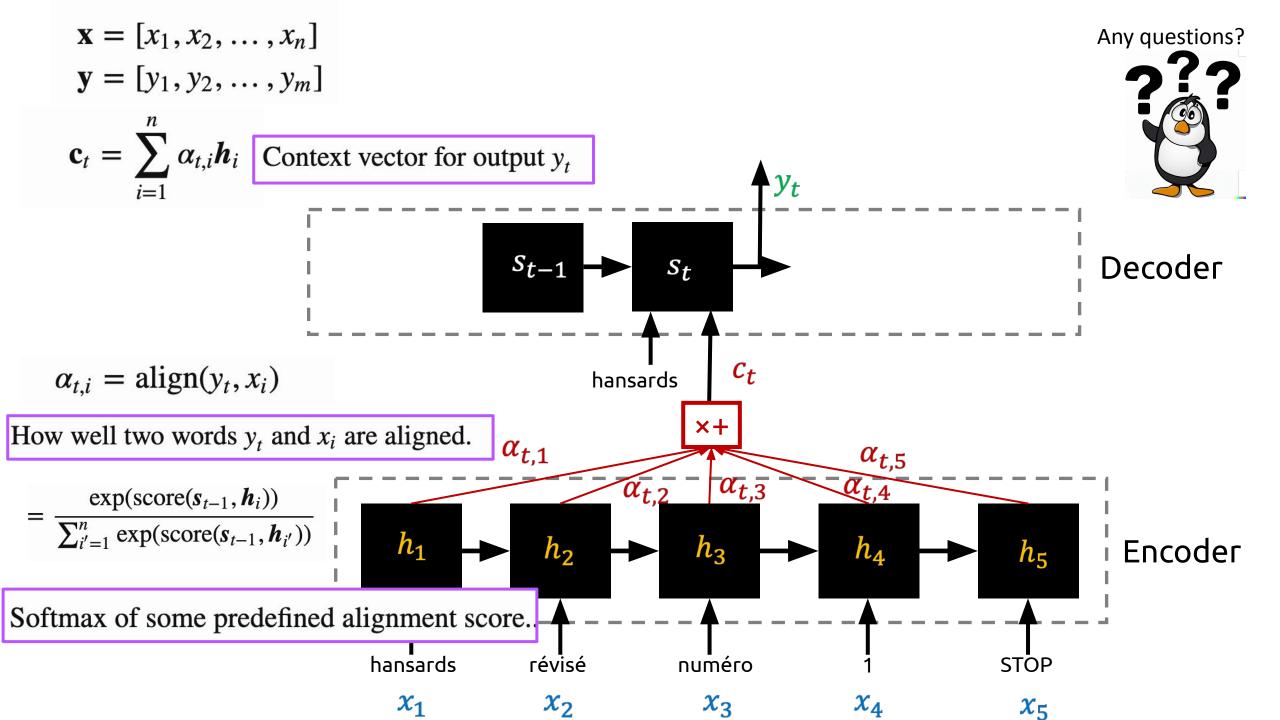




Attention - implementation



Attention - implementation y_t S_{t-1} Decoder s_t c_t hansards $\times +$ Attention layer $\alpha_{t,1}$ $\alpha_{t,5}$ $\alpha_{t,4}$ α_{t2} $\alpha_{t,3}$ h_1 h_3 h_2 h_4 Encoder h_5 hansards révisé numéro **STOP** *x*₄ x_1 x_2 x_3 x_5



Attention alignment score functions

$$\alpha_{t,i} = \operatorname{align}(y_t, x_i) = \frac{\exp(\operatorname{score}(s_{t-1}, h_i))}{\sum_{i'=1}^n \exp(\operatorname{score}(s_{t-1}, h_{i'}))}$$

Softmax of some predefined alignment score.

How well two words y_t and x_i are aligned.

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention alignment score functions

$$\alpha_{t,i} = \operatorname{align}(y_t, x_i) = \frac{\exp(\operatorname{score}(s_{t-1}, h_i))}{\sum_{i'=1}^n \exp(\operatorname{score}(s_{t-1}, h_{i'}))}$$

Softmax of some predefined alignment score.

How well two words y_t and x_i are aligned.

General attention:

$$score(s_{t-1}, h_i) = s_{t-1}^T W_a h_i$$

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention alignment score functions

$$\alpha_{t,i} = \operatorname{align}(y_t, x_i) = \frac{\exp(\operatorname{score}(s_{t-1}, h_i))}{\sum_{i'=1}^n \exp(\operatorname{score}(s_{t-1}, h_{i'}))}$$

How well two words y_t and x_i are aligned.

Softmax of some predefined alignment score.

Name	Alignment score function	Citation			
Content-base attention	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \operatorname{cosine}[\boldsymbol{s}_t, \boldsymbol{h}_i]$	Graves2014			
Additive(*)	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \mathbf{v}_a^{\top} \tanh(\mathbf{W}_a[\boldsymbol{s}_t; \boldsymbol{h}_i])$	Bahdanau2015			
Location-Base	$\alpha_{t,i} = \text{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015			
General	score $(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{s}_t^\top \mathbf{W}_a \mathbf{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015			
Dot-Product	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^{\top} \boldsymbol{h}_i$	Luong2015			
Scaled Dot- Product(^)	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \frac{\boldsymbol{s}_t^{T} \boldsymbol{h}_i}{\sqrt{n}}$	Vaswani2017			
	Note: very similar to the dot-product attention except for a scaling				
	factor; where n is the dimension of the source hidden state.				

Attention types

$$\alpha_{t,i} = \operatorname{align}(y_t, x_i) = \frac{\exp(\operatorname{score}(s_{t-1}, h_i))}{\sum_{i'=1}^n \exp(\operatorname{score}(s_{t-1}, h_{i'}))}$$

How well two words y_t and x_i are aligned.

Softmax of some predefined alignment score.

Name	Definition	Citation
Global/Soft	Attending to the entire input state space.	Xu2015

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention types

$$\alpha_{t,i} = \operatorname{align}(y_t, x_i) = \frac{\exp(\operatorname{score}(s_{t-1}, h_i))}{\sum_{i'=1}^{n} \exp(\operatorname{score}(s_{t-1}, h_{i'}))}$$

How well two words y_t and x_i are aligned.

Softmax of some predefined alignment score.

Name	Definition	Citation	
Global/Soft	Attending to the entire input state space.	Xu2015	
Local/Hard	Attending to the part of input state space; i.e. a patch of the input image.	Xu2015; Luong2015	

Any questions?

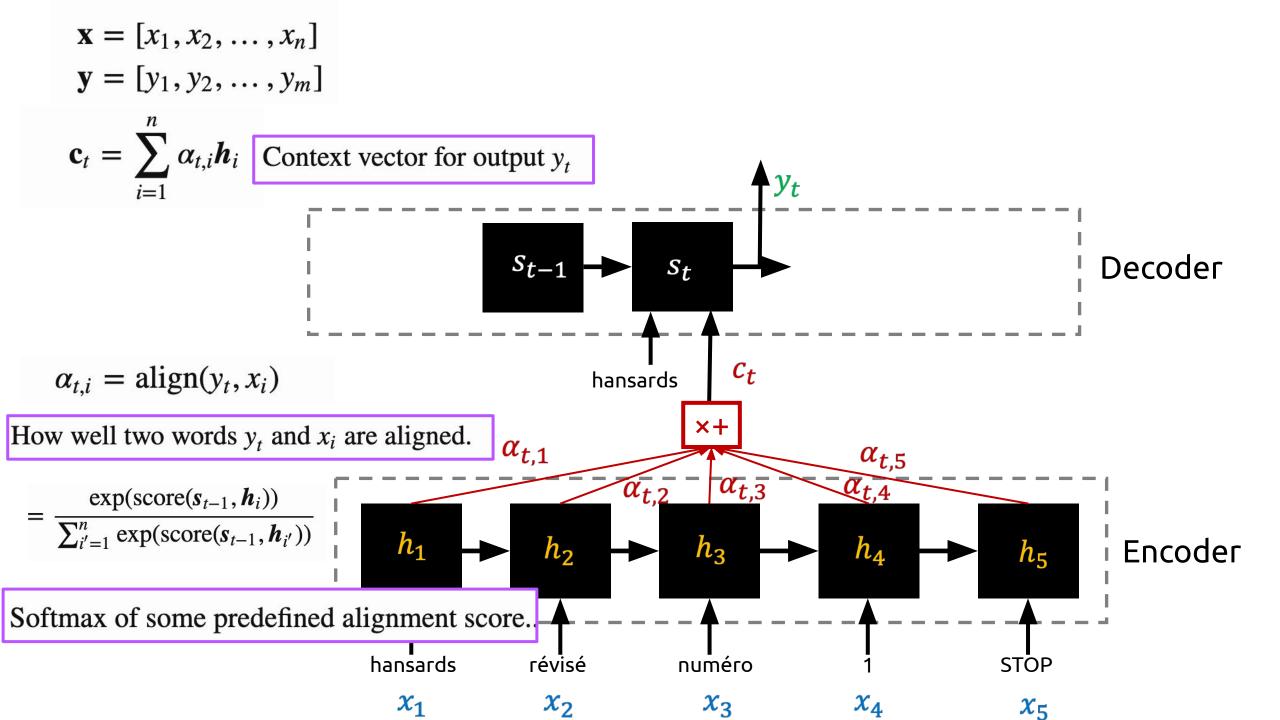
Attention types

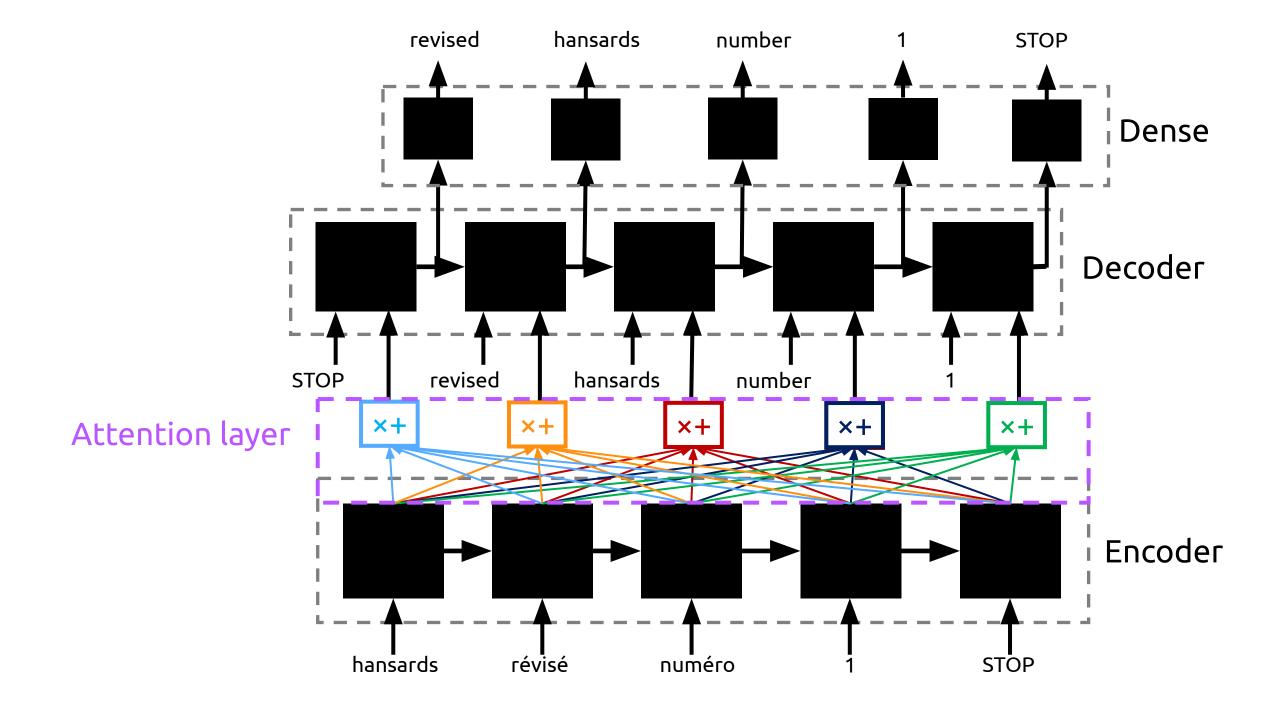
$$\alpha_{t,i} = \operatorname{align}(y_t, x_i) = \frac{\exp(\operatorname{score}(s_{t-1}, h_i))}{\sum_{i'=1}^n \exp(\operatorname{score}(s_{t-1}, h_{i'}))}$$

How well two words y_t and x_i are aligned.

Name	Definition	Citation		
Self- Attention(&)	Relating different positions of the same input sequence. Theoretically the self-attention can adopt any score functions above, but just replace the target sequence with the same input sequence.			
Global/Soft	Attending to the entire input state space.	Xu2015		
Local/Hard	Attending to the part of input state space; i.e. a patch of the input image.			
		Luong2015		

Softmax of some predefined alignment score.





Attention Example

We can represent the attention weights as a matrix:

Columns: words in the input

		hansards	révisé	numéro	1	STOP
	revised	1/2	1/4	1/4	0	0
Decementaria	hansards	1/4	1/2	1/4	0	0
Rows: words in the output	number	0	1/4	1/2	1/4	0
	1	0	0	1/4	1/2	1/4
	STOP	0	0	1/4	1/4	1/2

α_{j,i}: how much 'attention'
output word j pays to input
word i

What do the values in this particular matrix imply about the attention relationship between input/output words?

Attention Example

We can represent the attention weights as a matrix:

Columns: words in the input

		hansards	révisé	numéro	1	STOP
Rows: words in the output	revised	1/2	1/4	1/4	0	0
	hansards	1/4	1/2	1/4	0	0
	number	0	1/4	1/2	1/4	0
	1	0	0	1/4	1/2	1/4
	STOP	0	0	1/4	1/4	1/2

α_{j,i}: how much 'attention' output word j pays to input word i

"Words that are similar between the input and output influence each other the most"

Another Attention Example

Target: "Der Hund bellte mich an."

Input: "The dog barked at me."

Attention Example

Target:

"Der Hund <u>bellte</u> mich an."

We see that when we apply the attention to our inputs, we will pay attention to relatively important words for translation when predicting "bellte".

Input:

"The dog barked at me." [0, 1/4, 1/2, 1/4, 0]

Another Attention Example

"Der Hund hatte mich <u>angebellt</u>."

Attention weight matrix is another learnable parameter of the model!

Model will re-adjust the attention weights

Here, the verb portion of a past participle in German appears at the end of the sequence (What now?)

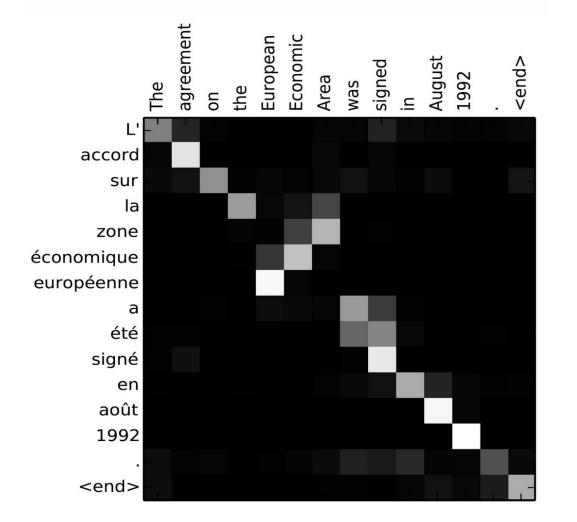
Input:

Target:

[0, 0, 0, 1/4, 1/4 1/2

The dog had barked at me."

Attention in Language Translation



Attention helps solve the alignment problem!

Attention is great!

- Attention significantly improves MT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states

Can you think of any another advantage?

- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get (soft) alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself

Attention is a general deep learning technique

More general definition of attention:

Given a set of vector *values*, and a vector *query*, <u>attention</u> is a technique to compute a weighted sum of the values, dependent on the query.

Intuition:

- The weighted sum is a *selective summary* of the information contained in the values, where the query determines which values to focus on.
- Attention is a way to obtain a *fixed-size representation of an* arbitrary set of representations (the values), dependent on some other representation (the query).

Image captioning with CNNs, RNNs, and Attention

A \underline{dog} is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

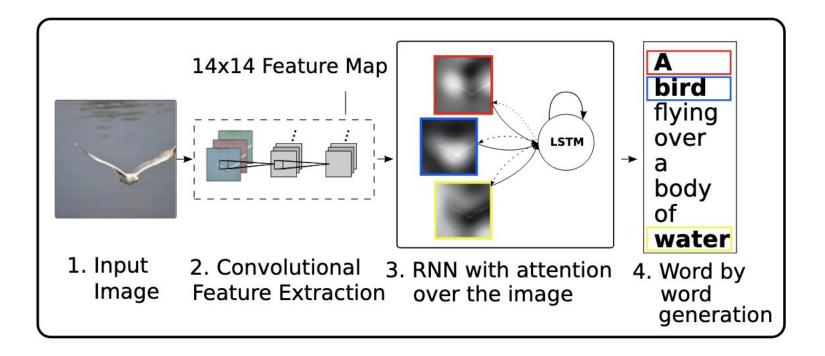
Think-pair-share:

How would you design this architecture with attention?

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Image captioning with CNNs, RNNs, and Attention



Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Image captioning with CNNs, RNNs, and Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A large white bird standing in a forest.

A woman holding a <u>clock</u> in her hand.

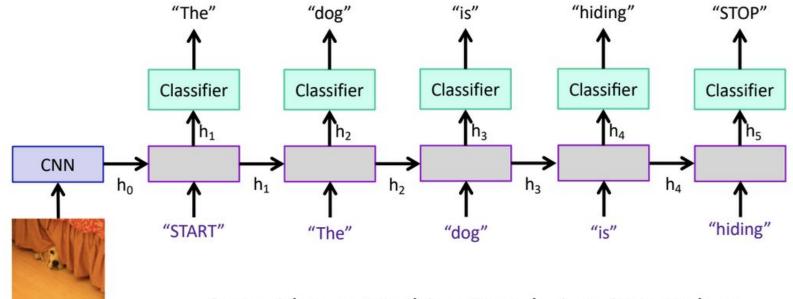
A man wearing a hat and a hat on a <u>skateboard</u>.

A person is standing on a beach with a <u>surfboard.</u>

A woman is sitting at a table with a large pizza.

A man is talking on his cell phone while another man watches.

Image captioning (HW5)



Same idea as Machine Translation, just replace E_s with an image-level embedding.

Do we still need the RNNs?

After all, we always compute the weighted sum of **all encoder states**.

"Attention Is All You Need"

A 2017 paper that introduced the *Transformer* model for machine translation

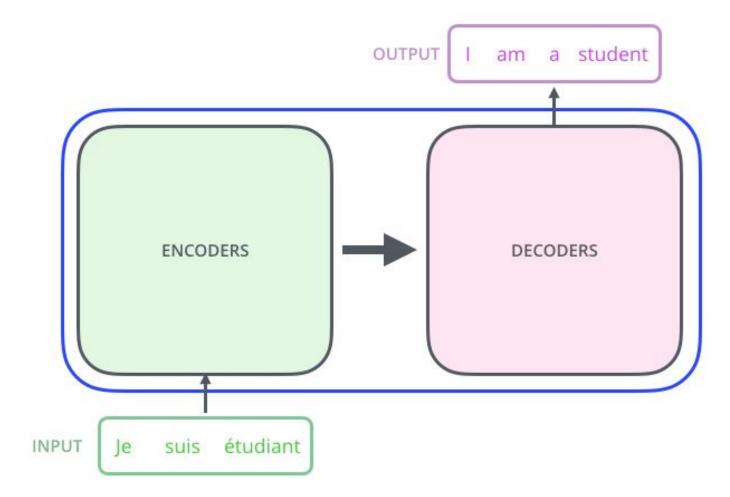
- Has no recurrent networks!
- Only uses attention

Motivation:

- RNN training is hard to parallelize since the previous word must be processed before next word
 - Transformers are trivially parallelizable
- Even with LSTMs / GRUs, preserving important linguistic context over very long sequences is difficult
 - Transformers don't even try to remember things (every step looks at a weighted combination of *all* words in the input sentence)

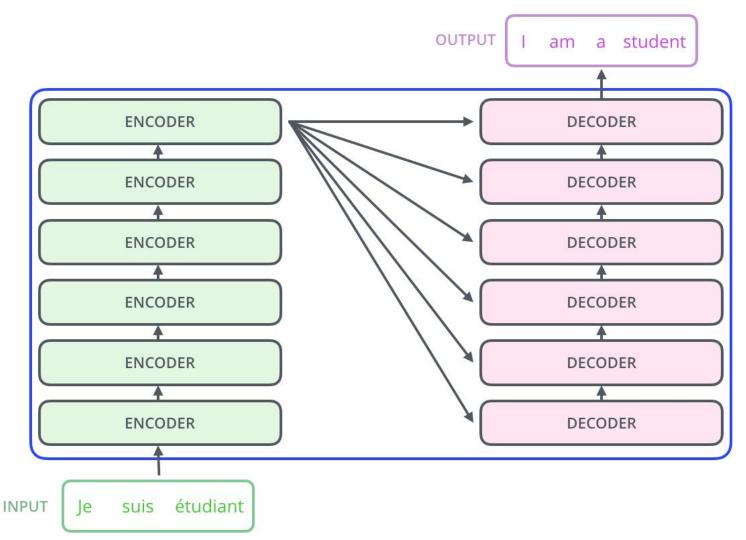
Transformer Model Overview

- The Transformer model breaks down into Encoder and Decoder blocks.
- At a high level, similar to the seq2seq architecture we've seen already...
- ...but there are no recurrent nets inside the Encoder and Decoder blocks!



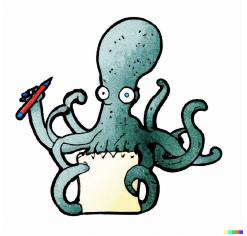
Transformer Model Overview

- The Transformer model breaks down into Encoder and Decoder blocks.
- At a high level, similar to the seq2seq architecture we've seen already...
- ...but there are no recurrent nets inside the Encoder and Decoder blocks!
- For better performance, often stack multiple Encoder and Decoder blocks (deeper network)



Recap

Attention for MT



Attention as a general technique Attention helps remove bottlenecks in simple encoder-decoder model

Attention score functions and types

Attention weights are learnable

Interpretation

Image captioning (HW5)

Attention is all you need (Transformers)

A \underline{dog} is standing on a hardwood floor.

