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Review: seq2seq Models

• Last time, we saw an encoder-decoder architecture for 
sequence-to-sequence learning
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Encoder LSTM

hansards révisé numéro 1 STOP

Decoder LSTM

STOP revised hansards number 1

Final LSTM state 
as sentence 
embedding

Dense layer

revised hansards number 1 STOP



Review: seq2seq Models

• Last time, we saw an encoder-decoder architecture for 
sequence-to-sequence learning

• We also saw how, instead of initializing the decoder with the final 
state of the encoder, we could use the sum of all encoder states
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Encoder LSTM

hansards révisé numéro 1 STOP

Decoder LSTM

STOP revised hansards number 1

Dense layer

revised hansards number 1 STOP

+

Sum of LSTM 
states as 
sentence 
embedding

 

“We would still loose 
information?”
~Wise student 

What are the information 
bottlenecks?





Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

+

What if we passed the sum 
of our encoder states to 
every cell in the decoder?

Just summing might 
not be sufficient!

Different words in the 
source have different 

importance for the 
target 



Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

×+

What if we passed the sum 
of our encoder states to 
every cell in the decoder?

What if the sum 
was a weighted 
sum instead? 
• Idea: different 

words in the 
input carry 
different 
importance



Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

What if each decoder 
cell received a different 
weighted sum?
• Idea: different words 

in the input carry 
different importance 
for each word in the 
output

×+×+ ×+ ×+×+×+

What if we passed the sum 
of our encoder states to 
every cell in the decoder?

What if the sum 
was a weighted 
sum instead? 

How do we achieve this?



“Attention”

This idea of passing each cell of the decoder a weighted sum of the 
encoder states is called attention.

• Different words in the output “pay attention” to different words in the input
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“Attention” - intuition

“Park”

How about we 
let model learn 
what is relevant 
for a particular 

output



Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

×+×+ ×+ ×+×+×+



Decoder

hansards
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hansards révisé numéro 1 STOP

×+

Attention - implementation



Decoder

hansards

Encoder

hansards révisé numéro 1 STOP

×+

     

     

 

 

   

 

Attention - implementation

  

 



Decoder

hansards

Encoder

hansards révisé numéro 1 STOP

×+

     

     

 

 

   

 
Attention layer

Attention - implementation
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Any questions?



Attention alignment score functions

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

How to 
measure this? 

Any ideas?



Attention alignment score functions

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

General attention: 
 



Attention alignment score functions

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html



Attention types

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html



Attention types

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html



Attention types

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Any questions?
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Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

×+×+ ×+ ×+×+×+Attention layer



Attention Example
We can represent the attention weights as a matrix:
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1/2 1/4 1/4 0 0

1/4 1/2 1/4 0 0

0 1/4 1/2 1/4 0

0 0 1/4 1/2 1/4

0 0 1/4 1/4 1/2

Columns: words in the input

Rows: words in 
the output

 

What do the values in this 
particular matrix imply 

about the attention 
relationship between 
input/output words?

hansards révisé numéro 1 STOP

revised

hansards

number

1

STOP



Attention Example
We can represent the attention weights as a matrix:
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1/2 1/4 1/4 0 0

1/4 1/2 1/4 0 0

0 1/4 1/2 1/4 0

0 0 1/4 1/2 1/4

0 0 1/4 1/4 1/2

Columns: words in the input

Rows: words in 
the output

 

hansards révisé numéro 1 STOP

revised

hansards

number

1

STOP

“Words that are similar 
between the input and 

output influence each other 
the most”



Another Attention Example
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“Der Hund bellte mich an.”

“The dog barked at me.”

Target:

Input:



Attention Example
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“Der Hund bellte mich an.”

“The dog barked at me.”

Target:

Input:

We see that when we apply the 
attention to our inputs, we will 
pay attention to relatively 
important words for translation 
when predicting “bellte”.

[0,        1/4,         1/2,            1/4, 0]



Another Attention Example
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“Der Hund hatte mich angebellt.”

“The dog had barked at me.”

Target:

Input:

[0,     0,        0,     1/4,    1/4   1/2       

Here, the verb portion of a past 
participle in German appears at 
the end of the sequence
(What now?)

Attention weight matrix is  
another learnable 
parameter of the model!

Model will re-adjust the 
attention weights 



Attention in Language Translation

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention helps solve the 
alignment problem!

Any questions?



Attention is great! 
• Attention significantly improves MT performance 

• It’s very useful to allow decoder to focus on certain parts of the source 

• Attention solves the bottleneck problem 
• Attention allows decoder to look directly at source; bypass bottleneck 

• Attention helps with vanishing gradient problem 
• Provides shortcut to faraway states 

• Attention provides some interpretability 
• By inspecting attention distribution, we can see what the decoder was focusing on 
• We get (soft) alignment for free! 
• This is cool because we never explicitly trained an alignment system 
• The network just learned alignment by itself 

Credit: Stanford CS224n 

Can you think of any 
another advantage?



Attention is a general deep learning technique 

Credit: Stanford CS224n 



Image captioning with CNNs, RNNs, and Attention

Think-pair-share:

How would you design 
this architecture with 
attention?



Image captioning with CNNs, RNNs, and Attention



Image captioning with CNNs, RNNs, and Attention



Image captioning (HW5)





“Attention Is All You Need”

A 2017 paper that introduced the Transformer model for machine translation

• Has no recurrent networks!

• Only uses attention

Motivation: 

• RNN training is hard to parallelize since the previous word must be processed before next word
• Transformers are trivially parallelizable

• Even with LSTMs / GRUs, preserving important linguistic context over very long sequences is 
difficult

• Transformers don’t even try to remember things (every step looks at a weighted combination of all 
words in the input sentence)

39



Transformer Model Overview

40
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

• The Transformer model breaks 
down into Encoder and Decoder 
blocks.

• At a high level, similar to the 
seq2seq architecture we’ve seen 
already...

• ...but there are no recurrent nets 
inside the Encoder and Decoder 
blocks!



Transformer Model Overview
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• The Transformer model breaks 
down into Encoder and Decoder 
blocks.

• At a high level, similar to the 
seq2seq architecture we’ve seen 
already...

• ...but there are no recurrent nets 
inside the Encoder and Decoder 
blocks!

• For better performance, often 
stack multiple Encoder and 
Decoder blocks (deeper network)

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

To be continued in next class!



Recap Attention helps remove bottlenecks 
in simple encoder-decoder model

Attention score functions and types

Attention weights are learnable

Attention for MT

Interpretation

Attention is all you need 
(Transformers)

Attention as a 
general 

technique

Image captioning (HW5)


