
Deep Learning
CSCI 1470/2470

Spring 2023

Ritambhara Singh

March 13, 2023

Monday

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”

https://openai.com/dall-e-2/

Review: seq2seq Models

• Last time, we saw an encoder-decoder architecture for
sequence-to-sequence learning

2

Encoder LSTM

hansards révisé numéro 1 STOP

Decoder LSTM

STOP revised hansards number 1

Final LSTM state
as sentence
embedding

Dense layer

revised hansards number 1 STOP

Review: seq2seq Models

• Last time, we saw an encoder-decoder architecture for
sequence-to-sequence learning

• We also saw how, instead of initializing the decoder with the final
state of the encoder, we could use the sum of all encoder states

4

Encoder LSTM

hansards révisé numéro 1 STOP

Decoder LSTM

STOP revised hansards number 1

Final LSTM state
as sentence
embedding

Dense layer

revised hansards number 1 STOP

Encoder LSTM

hansards révisé numéro 1 STOP

Decoder LSTM

STOP revised hansards number 1

Dense layer

revised hansards number 1 STOP

+

Sum of LSTM
states as
sentence
embedding

“We would still loose
information?”
~Wise student

What are the information
bottlenecks?

Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

+

What if we passed the sum
of our encoder states to
every cell in the decoder?

Just summing might
not be sufficient!

Different words in the
source have different

importance for the
target

Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

×+

What if we passed the sum
of our encoder states to
every cell in the decoder?

What if the sum
was a weighted
sum instead?
• Idea: different

words in the
input carry
different
importance

Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

What if each decoder
cell received a different
weighted sum?
• Idea: different words

in the input carry
different importance
for each word in the
output

×+×+ ×+ ×+×+×+

What if we passed the sum
of our encoder states to
every cell in the decoder?

What if the sum
was a weighted
sum instead?

How do we achieve this?

“Attention”

This idea of passing each cell of the decoder a weighted sum of the
encoder states is called attention.

• Different words in the output “pay attention” to different words in the input

11

“Attention” - intuition

“Park”

How about we
let model learn
what is relevant
for a particular

output

Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

×+×+ ×+ ×+×+×+

Decoder

hansards

Encoder

hansards révisé numéro 1 STOP

×+

Attention - implementation

Decoder

hansards

Encoder

hansards révisé numéro 1 STOP

×+

Attention - implementation

Decoder

hansards

Encoder

hansards révisé numéro 1 STOP

×+

Attention layer

Attention - implementation

Decoder

hansards

Encoder

hansards révisé numéro 1 STOP

×+

Any questions?

Attention alignment score functions

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

How to
measure this?

Any ideas?

Attention alignment score functions

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

General attention:

Attention alignment score functions

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention types

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention types

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention types

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Any questions?

Decoder

hansards

Encoder

hansards révisé numéro 1 STOP

×+

Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

×+×+ ×+ ×+×+×+Attention layer

Attention Example
We can represent the attention weights as a matrix:

26

1/2 1/4 1/4 0 0

1/4 1/2 1/4 0 0

0 1/4 1/2 1/4 0

0 0 1/4 1/2 1/4

0 0 1/4 1/4 1/2

Columns: words in the input

Rows: words in
the output

What do the values in this
particular matrix imply

about the attention
relationship between
input/output words?

hansards révisé numéro 1 STOP

revised

hansards

number

1

STOP

Attention Example
We can represent the attention weights as a matrix:

27

1/2 1/4 1/4 0 0

1/4 1/2 1/4 0 0

0 1/4 1/2 1/4 0

0 0 1/4 1/2 1/4

0 0 1/4 1/4 1/2

Columns: words in the input

Rows: words in
the output

hansards révisé numéro 1 STOP

revised

hansards

number

1

STOP

“Words that are similar
between the input and

output influence each other
the most”

Another Attention Example

28

“Der Hund bellte mich an.”

“The dog barked at me.”

Target:

Input:

Attention Example

29

“Der Hund bellte mich an.”

“The dog barked at me.”

Target:

Input:

We see that when we apply the
attention to our inputs, we will
pay attention to relatively
important words for translation
when predicting “bellte”.

[0, 1/4, 1/2, 1/4, 0]

Another Attention Example

30

“Der Hund hatte mich angebellt.”

“The dog had barked at me.”

Target:

Input:

[0, 0, 0, 1/4, 1/4 1/2

Here, the verb portion of a past
participle in German appears at
the end of the sequence
(What now?)

Attention weight matrix is
another learnable
parameter of the model!

Model will re-adjust the
attention weights

Attention in Language Translation

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention helps solve the
alignment problem!

Any questions?

Attention is great!
• Attention significantly improves MT performance

• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see what the decoder was focusing on
• We get (soft) alignment for free!
• This is cool because we never explicitly trained an alignment system
• The network just learned alignment by itself

Credit: Stanford CS224n

Can you think of any
another advantage?

Attention is a general deep learning technique

Credit: Stanford CS224n

Image captioning with CNNs, RNNs, and Attention

Think-pair-share:

How would you design
this architecture with
attention?

Image captioning with CNNs, RNNs, and Attention

Image captioning with CNNs, RNNs, and Attention

Image captioning (HW5)

“Attention Is All You Need”

A 2017 paper that introduced the Transformer model for machine translation

• Has no recurrent networks!

• Only uses attention

Motivation:

• RNN training is hard to parallelize since the previous word must be processed before next word
• Transformers are trivially parallelizable

• Even with LSTMs / GRUs, preserving important linguistic context over very long sequences is
difficult

• Transformers don’t even try to remember things (every step looks at a weighted combination of all
words in the input sentence)

39

Transformer Model Overview

40
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

• The Transformer model breaks
down into Encoder and Decoder
blocks.

• At a high level, similar to the
seq2seq architecture we’ve seen
already...

• ...but there are no recurrent nets
inside the Encoder and Decoder
blocks!

Transformer Model Overview

41

• The Transformer model breaks
down into Encoder and Decoder
blocks.

• At a high level, similar to the
seq2seq architecture we’ve seen
already...

• ...but there are no recurrent nets
inside the Encoder and Decoder
blocks!

• For better performance, often
stack multiple Encoder and
Decoder blocks (deeper network)

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

To be continued in next class!

Recap Attention helps remove bottlenecks
in simple encoder-decoder model

Attention score functions and types

Attention weights are learnable

Attention for MT

Interpretation

Attention is all you need
(Transformers)

Attention as a
general

technique

Image captioning (HW5)

