CSCI 1470/2470
Spring 2023

Ritambhara Singh

March 13, 2023
Monday

Deep Learning

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”
Review: seq2seq Models

• Last time, we saw an encoder-decoder architecture for sequence-to-sequence learning
Review: seq2seq Models

• Last time, we saw an encoder-decoder architecture for sequence-to-sequence learning

• We also saw how, instead of initializing the decoder with the final state of the encoder, we could use the sum of all encoder states
Old:
\[E_S = \text{final LSTM state} \]
New:
$$E_s = \text{sum of LSTM states}$$

Sum of LSTM states as sentence embedding

Encoder LSTM
- hansards
- révisé
- numéro
- 1
- STOP

Decoder LSTM
- revised
- hansards
- number
- 1
- STOP

Dense layer

What are the information bottlenecks?

“We would still lose information?”
~Wise student
What if the decoder LSTM forgets the sentence embedding?
What if we passed the sum of our encoder states to every cell in the decoder?

Just summing might not be sufficient! Different words in the source have different importance for the target.
What if we passed the sum of our encoder states to every cell in the decoder?

What if the sum was a weighted sum instead?

- Idea: different words in the input carry different importance.
What if we passed the sum of our encoder states to every cell in the decoder?

What if the sum was a weighted sum instead?

How do we achieve this?

What if each decoder cell received a different weighted sum?

- Idea: different words in the input carry different importance for each word in the output.
“Attention”

This idea of passing each cell of the decoder a weighted sum of the encoder states is called **attention**.

- Different words in the output “pay attention” to different words in the input
“Attention” - intuition

“How about we let model learn what is relevant for a particular output”
Attention - implementation

Decoder

hansards

Encoder

hansards

révisé

numéro

1

STOP

Attention - implementation

Decoder

hansards

Encoder

hansards

révisé

numéro

1

STOP
Attention - implementation
Attention - implementation

Decoder

Attention layer

Encoder

\[s_{t-1} \rightarrow s_t \]

\[x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \]

Attention - implementation
\[x = [x_1, x_2, \ldots, x_n] \]
\[y = [y_1, y_2, \ldots, y_m] \]
\[c_t = \sum_{i=1}^{n} \alpha_{t,i} h_i \]
Context vector for output \(y_t \)

\[\alpha_{t,i} = \text{align}(y_t, x_i) \]
How well two words \(y_t \) and \(x_i \) are aligned.

\[\frac{\exp(\text{score}(s_{t-1}, h_i))}{\sum_{i'=1}^{n} \exp(\text{score}(s_{t-1}, h_{i'}))} \]
Softmax of some predefined alignment score.
Attention alignment score functions

\[\alpha_{t,i} = \text{align}(y_t, x_i) = \frac{\exp(\text{score}(s_{t-1}, h_i))}{\sum_{i'=1}^{n} \exp(\text{score}(s_{t-1}, h_{i'}))} \]

Softmax of some predefined alignment score.

How well two words \(y_t \) and \(x_i \) are aligned.

How to measure this? Any ideas?
Attention alignment score functions

\[\alpha_{t,i} = \text{align}(y_t, x_i) = \frac{\exp(\text{score}(s_{t-1}, h_i))}{\sum_{i'=1}^{n} \exp(\text{score}(s_{t-1}, h_{i'}))} \]

Softmax of some predefined alignment score.

How well two words \(y_t \) and \(x_i \) are aligned.

General attention:

\[\text{score}(s_{t-1}, h_i) = s_{t-1}^T W_a h_i \]
Attention alignment score functions

\[
\alpha_{t,i} = \text{align}(y_t, x_i) = \frac{\exp(\text{score}(s_{t-1}, h_i))}{\sum_{i'=1}^{n} \exp(\text{score}(s_{t-1}, h_{i'}))}
\]

Softmax of some predefined alignment score.

How well two words \(y_t\) and \(x_i\) are aligned.

<table>
<thead>
<tr>
<th>Name</th>
<th>Alignment score function</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content-base</td>
<td>(\text{score}(s_t, h_i) = \text{cosine}[s_t, h_i])</td>
<td>Graves2014</td>
</tr>
<tr>
<td>attention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additive(*)</td>
<td>(\text{score}(s_t, h_i) = v_a^T \tanh(W_a [s_t; h_i]))</td>
<td>Bahdanau2015</td>
</tr>
<tr>
<td>Location-Base</td>
<td>(\alpha_{t,i} = \text{softmax}(W_a s_t))</td>
<td>Luong2015</td>
</tr>
<tr>
<td></td>
<td>Note: This simplifies the softmax alignment to only depend on the target position.</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>(\text{score}(s_t, h_i) = s_t^T W_a h_i)</td>
<td>Luong2015</td>
</tr>
<tr>
<td></td>
<td>where (W_a) is a trainable weight matrix in the attention layer.</td>
<td></td>
</tr>
<tr>
<td>Dot-Product</td>
<td>(\text{score}(s_t, h_i) = s_t^T h_i)</td>
<td>Luong2015</td>
</tr>
<tr>
<td>Scaled Dot-Product(^)</td>
<td>(\text{score}(s_t, h_i) = \frac{s_t^T h_i}{\sqrt{n}})</td>
<td>Vaswani2017</td>
</tr>
</tbody>
</table>

Note: very similar to the dot-product attention except for a scaling factor; where \(n\) is the dimension of the source hidden state.

Attention types

\[\alpha_{t,i} = \text{align}(y_t, x_i) = \frac{\exp(\text{score}(s_{t-1}, h_i))}{\sum_{i' = 1}^{n} \exp(\text{score}(s_{t-1}, h_{i'}))} \]

Softmax of some predefined alignment score.

How well two words \(y_t \) and \(x_i \) are aligned.

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global/Soft</td>
<td>Attending to the entire input state space.</td>
<td>Xu2015</td>
</tr>
</tbody>
</table>
Attention types

$\alpha_{t,i} = \text{align}(y_t, x_i) = \frac{\exp(\text{score}(s_{t-1}, h_i))}{\sum_{i'=1}^{n} \exp(\text{score}(s_{t-1}, h_{i'}))}$

Softmax of some predefined alignment score.

How well two words y_t and x_i are aligned.

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global/Soft</td>
<td>Attending to the entire input state space.</td>
<td>Xu2015</td>
</tr>
<tr>
<td>Local/Hard</td>
<td>Attending to the part of input state space; i.e. a patch of the input image.</td>
<td>Xu2015; Luong2015</td>
</tr>
</tbody>
</table>
Attention types

\[
\alpha_{t,i} = \text{align}(y_t, x_i) = \frac{\exp(\text{score}(s_{t-1}, h_i))}{\sum_{i'=1}^n \exp(\text{score}(s_{t-1}, h_{i'}))}
\]

Softmax of some predefined alignment score.

How well two words \(y_t\) and \(x_i\) are aligned.

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Attention(&)</td>
<td>Relating different positions of the same input sequence. Theoretically the self-attention can adopt any score functions above, but just replace the target sequence with the same input sequence.</td>
<td>Cheng2016</td>
</tr>
<tr>
<td>Global/Soft</td>
<td>Attending to the entire input state space.</td>
<td>Xu2015</td>
</tr>
<tr>
<td>Local/Hard</td>
<td>Attending to the part of input state space; i.e. a patch of the input image.</td>
<td>Xu2015; Luong2015</td>
</tr>
</tbody>
</table>

\[x = [x_1, x_2, \ldots, x_n] \]
\[y = [y_1, y_2, \ldots, y_m] \]
\[c_t = \sum_{i=1}^{n} \alpha_{t,i} h_i \] Context vector for output \(y_t \)

\[\alpha_{t,i} = \text{align}(y_t, x_i) \]
How well two words \(y_t \) and \(x_i \) are aligned.

\[= \frac{\exp(\text{score}(s_{t-1}, h_i))}{\sum_{i'=1}^{n} \exp(\text{score}(s_{t-1}, h_{i'}))} \]
Softmax of some predefined alignment score.
Decoder

revised hansards number 1 STOP

Dense

Encoder

hansards révisé numéro 1 STOP

Attention layer
Attention Example
We can represent the attention weights as a matrix:

Columns: words in the input

<table>
<thead>
<tr>
<th></th>
<th>hansards</th>
<th>révisé</th>
<th>numéro</th>
<th>1</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>revised</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>hansards</td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>number</td>
<td>0</td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>STOP</td>
<td>0</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>1/2</td>
</tr>
</tbody>
</table>

\(\alpha_{j,i} \): how much ‘attention’ output word j pays to input word i

What do the values in this particular matrix imply about the attention relationship between input/output words?
Attention Example

We can represent the attention weights as a matrix:

Columns: words in the input

<table>
<thead>
<tr>
<th></th>
<th>hansards</th>
<th>révisé</th>
<th>numéro</th>
<th>1</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>revised</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>hansards</td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>number</td>
<td>0</td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>STOP</td>
<td>0</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>1/2</td>
</tr>
</tbody>
</table>

\(\alpha_{j,i} \): how much ‘attention’ output word j pays to input word i

“Words that are similar between the input and output influence each other the most”
Another Attention Example

Target: “Der Hund bellte mich an.”

Input: “The dog barked at me.”
Attention Example

Target: “Der Hund bellte mich an.”

Input: “The dog barked at me.”

We see that when we apply the attention to our inputs, we will pay attention to relatively important words for translation when predicting “bellte”.

[0, 1/4, 1/2, 1/4, 0]
Another Attention Example

Target: “Der Hund hatte mich angebellt.”

Input: “The dog had barked at me.”

Here, the verb portion of a past participle in German appears at the end of the sequence (What now?)

Attention weight matrix is another learnable parameter of the model!

Model will re-adjust the attention weights
Attention in Language Translation

Any questions?

Attention helps solve the alignment problem!
Attention is great!

• Attention significantly improves MT performance
 • It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
 • Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
 • Provides shortcut to faraway states

• Attention provides some interpretability
 • By inspecting attention distribution, we can see what the decoder was focusing on
 • We get (soft) alignment for free!
 • This is cool because we never explicitly trained an alignment system
 • The network just learned alignment by itself

Can you think of any another advantage?
Attention is a general deep learning technique

More general definition of attention:
Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query.

Intuition:
- The weighted sum is a selective summary of the information contained in the values, where the query determines which values to focus on.
- Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values), dependent on some other representation (the query).
Image captioning with CNNs, RNNs, and Attention

Think-pair-share:

How would you design this architecture with attention?
Image captioning with CNNs, RNNs, and Attention

1. Input Image
2. Convolutional Feature Extraction
3. RNN with attention over the image
4. Word by word generation

Image captioning with CNNs, RNNs, and Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

- A large white bird standing in a forest.
- A woman holding a clock in her hand.
- A man wearing a hat and a hat on a skateboard.
- A person is standing on a beach with a surfboard.
- A woman is sitting at a table with a large pizza.
- A man is talking on his cell phone while another man watches.

Same idea as Machine Translation, just replace E_s with an image-level embedding.
Do we still need the RNNs?

After all, we always compute the weighted sum of all encoder states.
“Attention Is All You Need”

A 2017 paper that introduced the *Transformer* model for machine translation

- Has no recurrent networks!
- *Only* uses attention

Motivation:

- RNN training is hard to parallelize since the previous word must be processed before next word
 - Transformers are trivially parallelizable
- Even with LSTMs / GRUs, preserving important linguistic context over *very* long sequences is difficult
 - Transformers don’t even try to remember things (every step looks at a weighted combination of *all* words in the input sentence)
Transformer Model Overview

• The Transformer model breaks down into Encoder and Decoder blocks.

• At a high level, similar to the seq2seq architecture we’ve seen already...

• ...but there are no recurrent nets inside the Encoder and Decoder blocks!
Transformer Model Overview

- The Transformer model breaks down into Encoder and Decoder blocks.

- At a high level, similar to the seq2seq architecture we’ve seen already...

- ...but there are no recurrent nets inside the Encoder and Decoder blocks!

- For better performance, often stack multiple Encoder and Decoder blocks (deeper network)

Recap

Attention helps remove bottlenecks in simple encoder-decoder model

Attention score functions and types

Attention weights are learnable

Attention as a general technique

Interpretation

Image captioning (HW5)

Attention is all you need (Transformers)

A dog is standing on a hardwood floor.