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What to do when DL systems get big
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• Big = big data
• Big = big model



Today’s goal – learn about scaling deep learning 
models and sustainable deep learning

(1) Managing memory constraints

(2) Distributing work across processors, GPUs, machines

(3) Development of sustainable DL systems
• Near-term solutions
• Mid-term solutions
• Long-term solutions



Scaling: Some Key Questions

• What do I do when my dataset won’t fit in memory?

• Can I use multiple processors to train faster?

• Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)
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Review: Consequences of batched data loading

• Great! We can train/test on all 
our data without blowing out 
memory

• But, there’s a price to pay:
• More time loading data, in general
• Disk is idle while model is running

•What can we do about this?

Loading data all at once:

Batched data loading:
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Reducing data loading time

• Use the fastest disk you can get your hands on
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Magnetic Disk Drive 
(HDD)

SATA Solid State Disk 
(SDD)

NVMe Solid State Disk 
(NVMe)

https://unihost.com/help/nvme-vs-ssd-vs-hdd-overview-and-comparison/ 

https://unihost.com/help/nvme-vs-ssd-vs-hdd-overview-and-comparison/
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Reducing data loading time

• Sequential accesses (memory addresses are contiguous)
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Reducing data loading time

• Random accesses 
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CPU/GPU Pipelining

• If we train our model on the GPU...

• ...then the CPU is free to handle data loading while the model is 
running

• GPU doesn’t have to “wait” on the CPU to load data
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In Tensorflow: tf.data.Dataset does this

# Create a Dataset that contains all .jpg files

# in a directory

dir_path = dir_name + '/*.jpg’

dataset = tf.data.Dataset.list_files(dir_path)

# Apply a function that will read the contents of # 
each file into a tensor

dataset =

dataset.map(map_func=load_and_process_image)

# Load up data in batches

dataset = dataset.batch(batch_size)

# Iterate over dataset

for i, batch in enumerate(dataset):

   # processing code goes here

def load_and_process_image(file_path):

   # Load image

   image = tf.io.decode_jpeg(

      tf.io.read_file(file_path),

      channels=3)

   

   # Convert image to normalized float [0, 1]

   image = tf.image.convert_image_dtype(

      image,

      tf.float32)

   

   # Rescale data to range (-1, 1)

   image = (image - 0.5) * 2

   return image
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The pipeline isn’t always so perfect

• If you have large batch sizes, high-resolution images, etc., it can take 
longer to load the batch from disk than it takes the model to run

• GPU sits idle, wasting compute potential
• This is an example of an I/O bound program (i.e. the bottleneck is disk I/O)
• A compute-bound program = bottleneck is processor speed
• A memory-bound program = bottleneck is memory read/write throughput

• What can we do?
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Parallel Data Loading

• If you’re doing preprocessing on each loaded datum to prepare it for 
training, then the program may actually be compute-bound.

• Disk is capable of higher read throughput, but the CPU is has to spend time 
doing stuff to one datum before it can request the next one.

• Solution: use multiple CPUs!
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Any ideas?
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A note about Python parallelism

• Python does not support multithreading
• One Python process = one thread

• tf.data.Dataset gets around this using multiprocessing
• Each ‘thread’ is actually a separate Python process (with its own interpreter)

• This means there are limits to what your per-datum preprocessing 
functions can do.

• In particular, no shared access to the state of Python objects.
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https://docs.python.org/3/library/multiprocessing.html


Example: keeping track of images loaded
def load_and_process_image(file_path):

   # Load image

   image = tf.io.decode_jpeg(

      tf.io.read_file(file_path),

      channels=3)

   

   # Convert image to normalized float [0, 1]

   image = tf.image.convert_image_dtype(

      image,

      tf.float32)

   

   # Rescale data to range (-1, 1)

   image = (image - 0.5) * 2

   return image
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Example: keeping track of images loaded
images_loaded = []

def load_and_process_image(file_path):

   images_loaded.append(file_path)

   # Load image

   image = tf.io.decode_jpeg(

      tf.io.read_file(file_path),

      channels=3)

   

   # Convert image to normalized float [0, 1]

   image = tf.image.convert_image_dtype(

      image,

      tf.float32)

   

   # Rescale data to range (-1, 1)

   image = (image - 0.5) * 2

   return image

This will not work!
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Will this work?



Scaling: Some Key Questions

• What do I do when my dataset won’t fit in memory?

• Can I use multiple processors to train faster?

• Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

26



Scaling: Some Key Questions

• What do I do when my dataset won’t fit in memory?

• Can I use multiple processors to train faster?

• Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

27



Multi-GPU Training

• Thus far, we’ve just talked about using multiple CPUs for data loading

• But we can also talk about how to split up the model’s computation 
onto multiple GPUs, if we have more than one available.
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Multi-GPU Training

29
https://medium.com/@esaliya/model-parallelism-in-deep-learning-is-not-what-you-think-94d2f81e82ed 

Two major ways to split up the model computation

https://medium.com/@esaliya/model-parallelism-in-deep-learning-is-not-what-you-think-94d2f81e82ed


Multi-GPU Training

30

Data parallelism:

compute gradients on 
larger batches by 
splitting the batches into 
smaller sub-batches, one 
per GPU.

Two major ways to split up the model computation



Multi-GPU Training
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Data parallelism:

compute gradients on 
larger batches by 
splitting the batches into 
smaller sub-batches, one 
per GPU.

Model parallelism:

compute different 
parts of the model on 
different GPUs
(Weights of FC layer)

Two major ways to split up the model computation



Multi-GPU training in Tensorflow

• Tensorflow provides an API for data parallelism across multiple GPUs

• Workload partitioning: TF has no utilities for automatically splitting up 
your model across multiple GPUs. You’d have to engineer that 
yourself.
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https://www.tensorflow.org/guide/distributed_training


Hardware support for multi-GPU training

• NVIDIA cards support NVLink, 
which allows for fast direct 
memory transfer between GPUs

• Their line of DGX 
workstations/supercomputers 
takes advantage of this feature

• But they cost upwards of $40k...
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Distributed Training
• What if multiple GPUs isn’t enough? Suppose your model (or your 

data) is so big, the only way you can train it in a reasonable amount of 
time is to use GPUs on a whole cluster of machines?

• Side note: unlikely to be a problem for you unless you’re in a big company 
with tons of data and compute resource (e.g. Google/Facebook)

36
[Minerva supercomputer, Max Planck Institute for Gravitational Physics]



Distributed Training

• Recall our definition of data parallelism:
• Data parallelism: compute gradients on larger batches by splitting the 

batches into smaller sub-batches, one per GPU.

• If we’re splitting up the batch across a cluster of, say, 100 machines, 
then we need to wait for all 100 machines to compute their gradients 
before we can update the model’s parameters.

• This synchronization bottleneck slows things down, preventing us 
from getting the 100x speedup we might expect.

• What if we just didn’t synchronize, and let each machine use its 
gradient to update the model parameters whenever it’s ready?

• Do you think this will work?
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Lock-free parallel gradient updates?

• Surprisingly, lock-free gradient updating actually does work.

• Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient 
Descent was the first paper to show this.

• Achieves optimal convergence rates in theory if the gradient updates 
are sparse. Even if they’re not, it often performs well in practice.
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https://people.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf
https://people.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf


Architectures for distributed training

• Lots of decisions to make:
• How many nodes should be workers?
• How many nodes should store/update model parameters?

• ParameterServer is one prominent architecture for managing this 
design space
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Any questions?

https://web.eecs.umich.edu/~mosharaf/Readings/Parameter-Server.pdf


Today’s goal – learn about scaling deep learning 
models and sustainable deep learning

(1) Managing memory constraints

(2) Distributing work across processors, GPUs, machines

(3) Development of sustainable DL systems
• Near-term solutions
• Mid-term solutions
• Long-term solutions



How do we train and run our neural nets?
$ python3 <whatever_script>.py
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What’s actually happening when we run the 
script?
Three options (in this class):

1. The network trains locally on your CPU
2. The network trains on Brown CS department GPUs
3. The network trains remotely on GPUs owned by Google (GCP)

(in the world, could also likely be)

4. The network trains remotely on GPUs owned by Amazon (AWS)
5. The network trains remotely on GPUs owned by Microsoft
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For example:

The server farm for processing data at CERN



A closer look at power consumption <—> 
GPUs

● How much power does a GPU use while training a network?
○ Depends on the GPU, but it is a lot

● Strubell et al. (2019) estimated the power consumption involved 
in training state of the art neural networks (GPT2, Transformer, 
ELMo, BERT)
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https://arxiv.org/pdf/1906.02243.pdf


Carbon emissions the average 
American produces in a year:

45

36,156 lbs



Train an NLP pipeline: how many 
times of the average US yearly 
emissions?

What about a Transformer?
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Train an NLP pipeline (incl. 
tuning/experimentation):
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~78,500 lbs (2.17x US yearly)



Train a transformer pipeline (like 
GPT-2):

3x greater than average US yearly 
emissions?
5x? 10x? More??
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Train a transformer pipeline (incl. 
tuning/experimentation):
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~626,000 lbs (17.32x US yearly)
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From Strubell et al., 2019



That’s a lot of power!
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...where is it coming from?



How is “the cloud” powered?
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From Strubell et al., 2019



How can DL be more
efficient & sustainable?
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Future Directions (near-term)

• Research/production should prioritize computationally efficient 
networks

• There’s already movement in this direction, e.g. MobileNet for deploying 
CNNs on low-power mobile devices

• Researchers should report training time, training hardware used, 
and hyperparameter sensitivity 

• Gives others a sense of costs and benefits of training a network
• Reporting time & hardware are already standard practice; hyperparameter 

sensitivity less so...
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https://arxiv.org/abs/1704.04861


Future Directions (mid-term)

• Network pruning

• Random weight initialization on large number of 
connections — only some weights are going to be 
meaningful

• After training a network, most connections have 
weightings of approx 0 and only ~10-20% of 
connections have a meaningful weighting

• Thus, we can drop (or prune) 80-90% of network 
connections and maintain high network performance

• This process radically increases network speed (and 
decreases power consumption) in production
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https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html



Future Directions (mid-term)
• Network pruning (continued)

• What if we take the pruned network (i.e. the one with 80-90% of 
connections dropped), reset its weights to their original initialization values, 
and try to train the network again? 

Do you think this will work? 
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Future Directions (mid-term)
• Network pruning (continued)

• What if we take the pruned network (i.e. the one with 80-90% of 
connections dropped), reset its weights to their original initialization values, 
and try to train the network again? 

• Conventional wisdom says: “that network, because it’s smaller, won’t learn 
as well—you need the extra connections to allow the network to find a 
good local optimum”

• What actually happens: the network trains as well, or sometimes even 
better, than the full network!
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Future Directions (mid-term)

• Network pruning (continued)

• What’s going on?? 

• The current working hypothesis: every big network contains within it some 
smaller sub-network(s) that, when combined with the right weight 
initialization, performs as well or better than the big network.

• Finding one of these sub-networks has been compared to “finding the 
winning lottery ticket”...

• ...so this is known as the Lottery Ticket Hypothesis

• It’s an open area of research
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https://go.technologyreview.com/weve-been-training-neural-networks-all-wrong
https://eng.uber.com/deconstructing-lottery-tickets/?utm_campaign=the_algorithm.unpaid.engagement&utm_source=hs_email&utm_medium=email&_hsenc=p2ANqtz-8nriXxRtJjvaMeBsxm6G3yVd_hpLDaSlyb4DWupcsAzxmP_1REjmEPlVRC2A4ctcO8bxb4
https://arxiv.org/abs/1903.01611?utm_campaign=the_algorithm.unpaid.engagement&utm_source=hs_email&utm_medium=email&_hsenc=p2ANqtz-8nriXxRtJjvaMeBsxm6G3yVd_hpLDaSlyb4DWupcsAzxmP_1REjmEPlVRC2A4ctcO8bxb4
https://openreview.net/pdf?id=rJl-b3RcF7&utm_campaign=the_algorithm.unpaid.engagement&utm_source=hs_email&utm_medium=email&_hsenc=p2ANqtz-8nriXxRtJjvaMeBsxm6G3yVd_hpLDaSlyb4DWupcsAzxmP_1REjmEPlVRC2A4ctcO8bxb4


Future Directions (mid-term)

• Network pruning (continued)

• However, there is a bias-complexity tradeoff… 

• While this prevents the model from overfitting and ensures the model is 
more generalizable for future unseen data, 

• the model becomes smoother and may become more susceptible to 
underfitting 

• May amplify already-existing biases in deep learning networks
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https://arxiv.org/pdf/2010.03058.pdf


Future Directions (long-term)

• More efficient physical substrates for neural networks

• The massive parallelism of GPUs has proven to be useful for training deep 
networks, but GPUs are also power hungry.

• Are there other physical computing devices that might also be a good fit for 
the kinds of computations that deep nets perform?
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Future Directions (long-term)

• Neuromorphic computation
• “neuro-”: brain- or neuron-like
• “-morphic”: having the shape or structure of

• What if we could make a piece of hardware (i.e. a chip) that 
interfaces with a computer and creates a physical neural network?

• i.e. instead of simulating ‘neurons’ with digital computers, simulate them 
with analog circuits

• Potentially 1000s of times more energy- and space-efficient than GPUs
• A specific instance of an ASIC (“application-specific integrated circuit”)

• Other domains where this has been successful: cameras have specialized processing 
chips called ISPs (“image signal processors”)
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Future Directions (long-term)
• Physical connection ≅ connection between two layers in a network
• When electricity flows through, the connection is reinforced

• Allows training / updating weights directly in hardware
• Proposed designs use memristors (memory +  resistors) to 

implement connections
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Future Directions (long-term)
• Optical neural networks

• What if we replaced the electrons flowing through our neuromorphic chips 
with photons?

• Tiny amount of energy — measured in attojoules (millionth of a trillionth of 
a joule, 10-18 joules)
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Future Directions (long-term)

• Neuromorphic computing is also an open area of research

• Optical neural networks are also an open area of research
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Any questions?

https://pdfs.semanticscholar.org/683d/ac0c08b237fa0e29e08dbdedf80657198160.pdf
https://www.nature.com/articles/s41598-018-30727-9
https://www.youtube.com/watch?v=qfsAMX4nHqA
https://www.youtube.com/watch?v=gX9NqDuwTnA
https://www.therobotreport.com/photonic-chip-could-run-optical-neural-networks-10-million-times-more-efficiently/
https://ieeexplore.ieee.org/document/6757323


Recap Scaling across processors

Scaling across GPUs

Scaling across machines

Scaling deep learning 
systems

Near-term solutions

Long-term solutions (Hardware upgrade)

Sustainable 
deep learning

Mid-term solutions (Network pruning)


