CSCI 1470/2470 Spring 2023

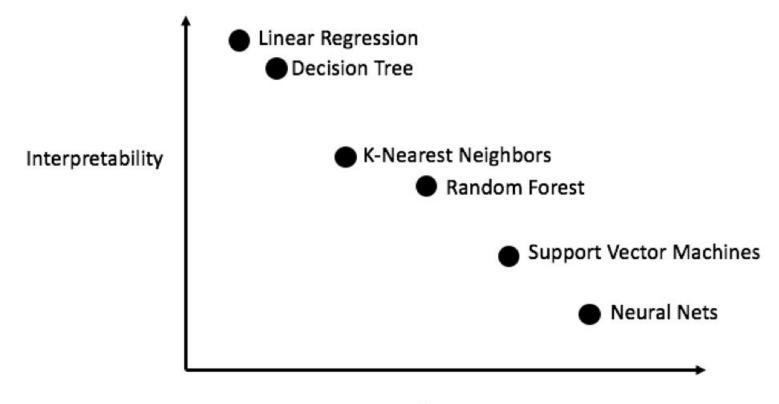
Ritambhara Singh

March 22, 2023 Wednesday

Deep Learning

DALL-E 2 prompt "a painting of deep underwater with a yellow submarine in the bottom right corner"

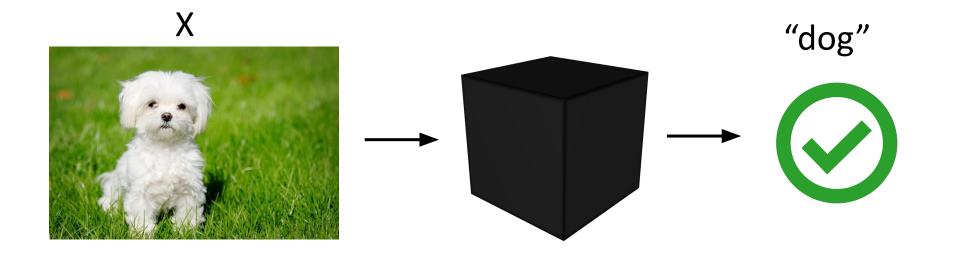
Machine Learning and Interpretability



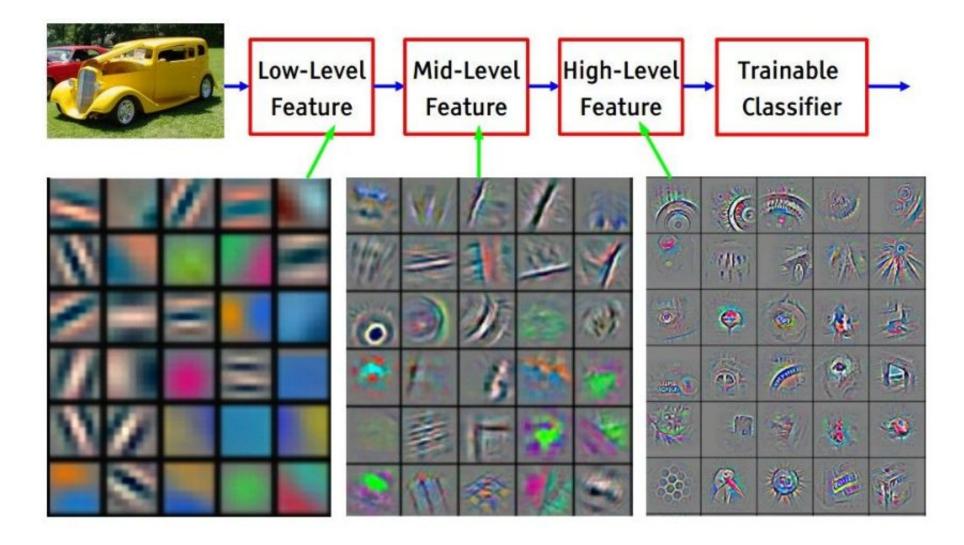
Accuracy

Deep Nets are "Black Box" Models

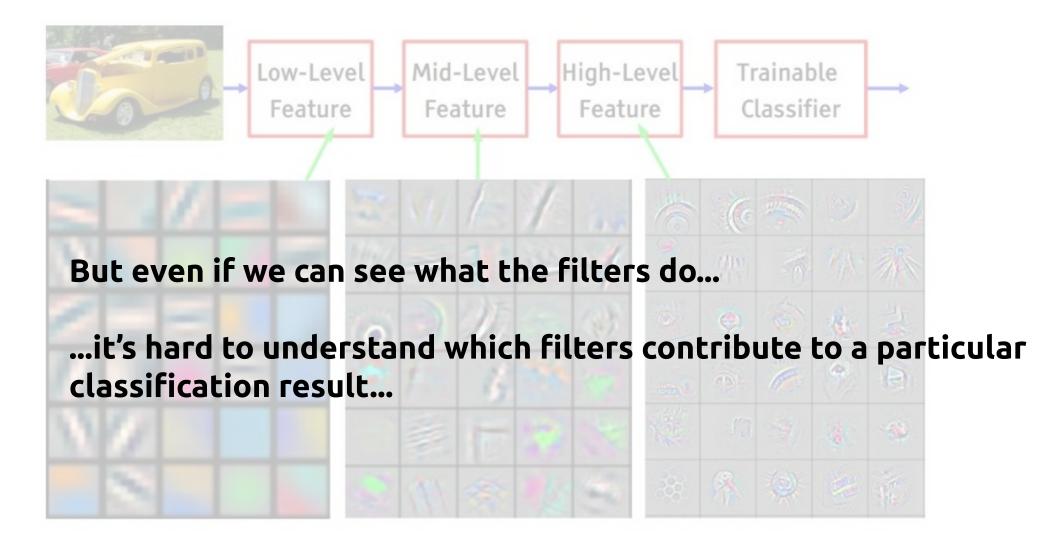
- What do the hidden layers of networks actually learn?
 - Image recognition: What do the many thousands of filters actually represent??
 - **Natural language processing**: What does the RNN hidden state actually store??



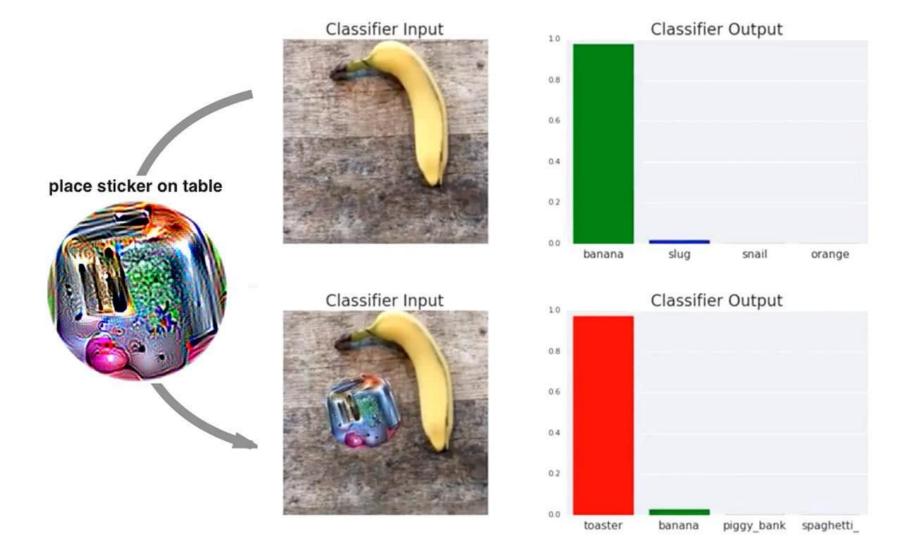
Example: What do CNN filters look like?



Example: What do CNN filters look like?



...which leads to situations like this:

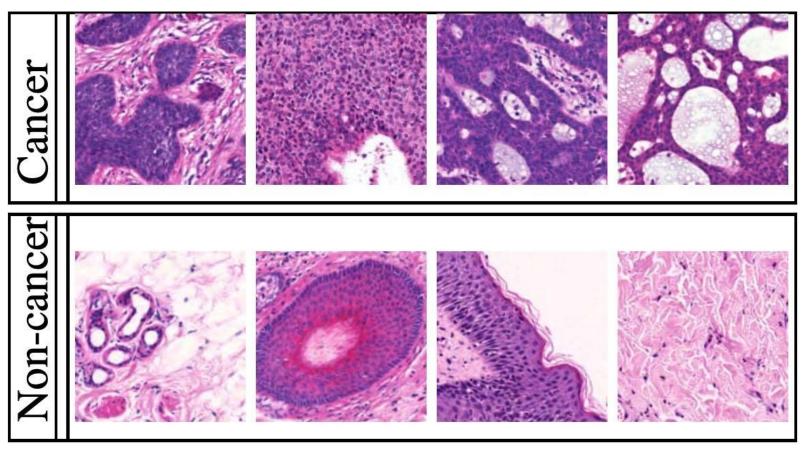


Deep Learning has an *interpretability* problem

Maybe not such a big deal if we're just classifying breakfast foods...

...but what if the decision is *really* important?

What if the decision is *really* important?



From <u>Cruz-Roa et al., 2013</u>

What if the decision is *really* important?

 How can a human (e.g. a doctor) trust that a network is making a sensible decision (e.g. a patient has the flu, and *not* strep, mono, or pneumonia)?

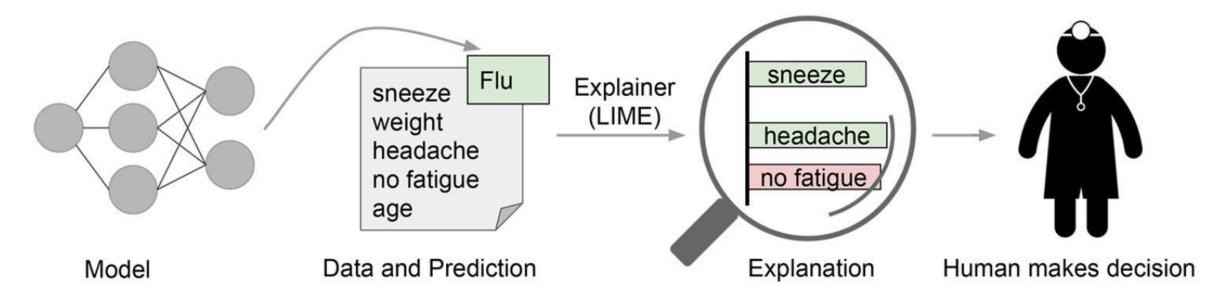


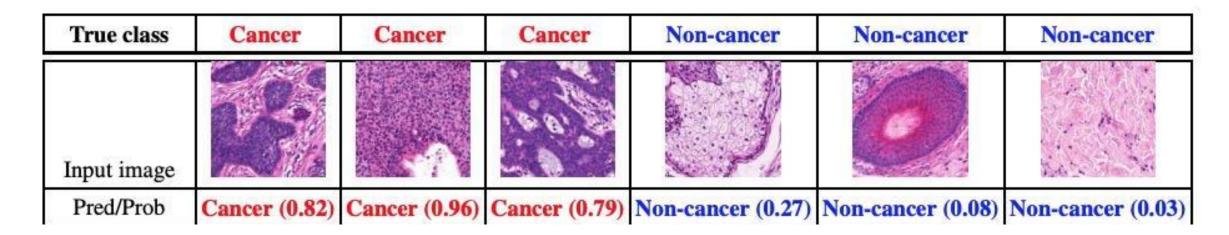
Figure 1. Explaining individual predictions to a human decision-maker. Source: Marco Tulio Ribeiro.

Model Interpretability

- Broadly, *interpretability* refers to ways of understanding/measuring how a model made a decision
- Can take the form of visualizations, summary statistics, metrics, ...
- A whole emerging subfield of study: *Interpretable DL/AI*

Making Cancer Predicting Interpretable

Simultaneously learn to predict which regions of the tissue are cancerous (so a person can look and see if that makes sense)

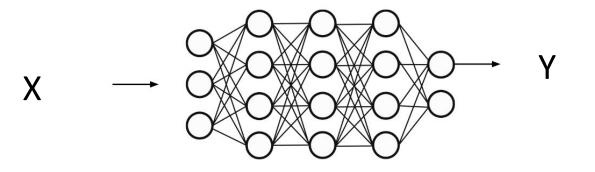


Making Cancer Predicting Interpretable

Simultaneously learn to predict which regions of the tissue are cancerous (so a person can look and see if that makes sense)

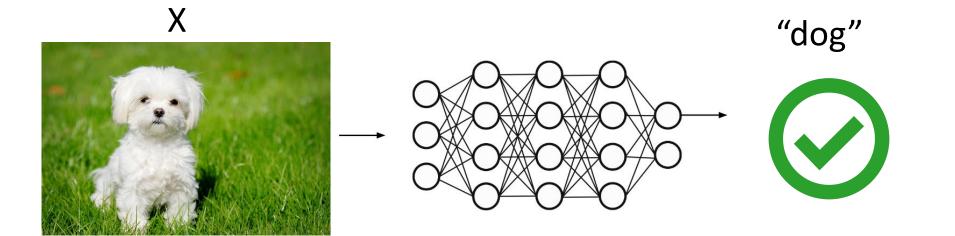
True class	Cancer	Cancer	Cancer	Non-cancer	Non-cancer	Non-cancer
Input image			10.0			
Pred/Prob	Cancer (0.82)	Cancer (0.96)	Cancer (0.79)	Non-cancer (0.27)	Non-cancer (0.08)	Non-cancer (0.03)
Digital staining						

Task formulation



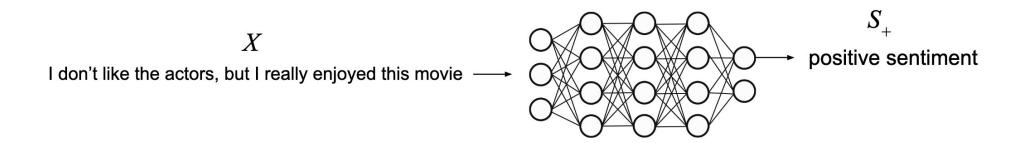
Which features in X are most important for the model prediction Y?

Task formulation



Which pixels are most important for classification?

Task formulation



Which words/characters are most important for classification?

Today's goal – learn about interpretation in DL

(1) Model architecture based methods (CNNs and RNNs)

(2) Gradient-based methods

(3) Model agnostic methods

Note: categorization done loosely by me

Today's goal – learn about interpretation in DL

(1) Model architecture based methods (CNNs and RNNs)

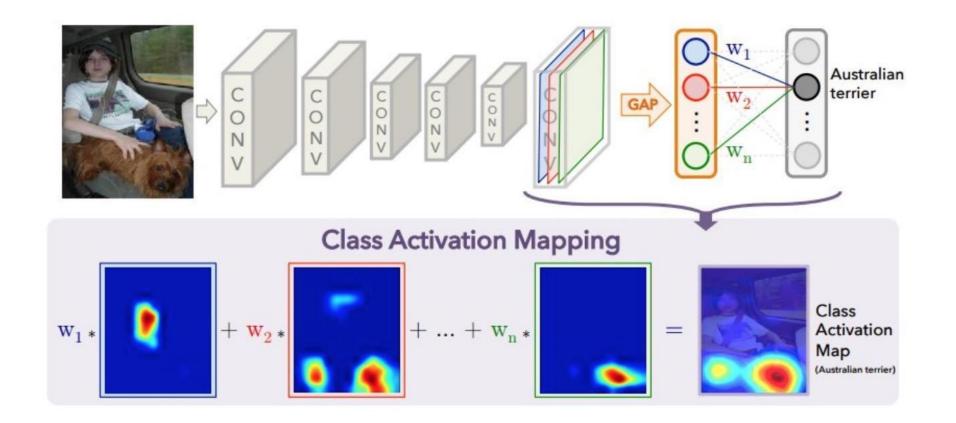
(2) Gradient-based methods

(3) Model agnostic methods

Identifying image regions that influence classification result

<u>Global Average Pooling</u>: Average all the pixels in the last feature map to produce a flat vector, then feed that through a linear layer to produce class logits

• A weighted sum of the last feature maps, according to the weights of the linear layer, localizes the region that leads to the classification

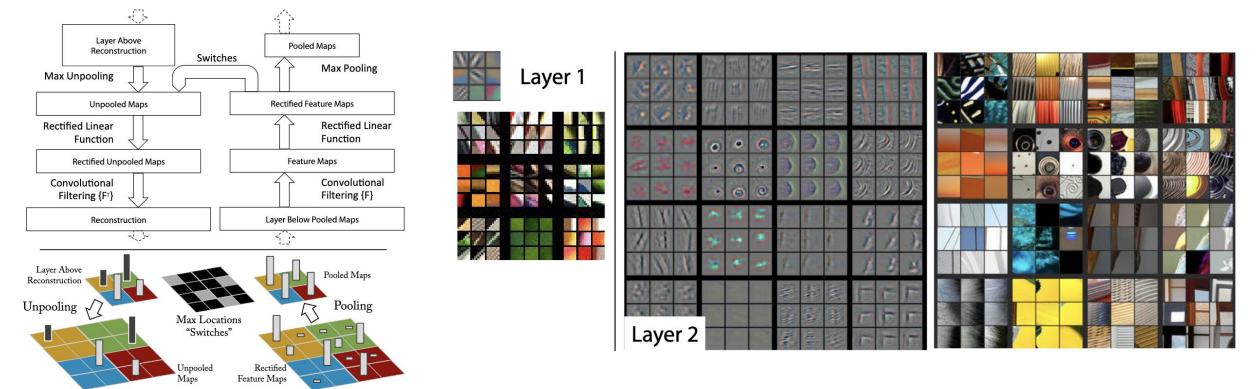


Deconvolution

Map filter activations back to the input pixel space, showing what input pattern originally caused a given activation in the feature maps.

Perform this mapping with a Deconvolutional Network (decovnet).

Decovnet: a convnet model that uses the same components (filtering, pooling) but in reverse, so instead of mapping pixels to features it does the opposite.



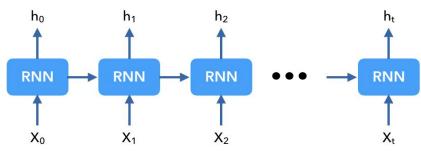
Visualizing and Understanding Convolutional Networks

Interpreting RNNs

Pick one entry (cell) of the hidden state, highlight characters that cause that cell to take on a high value

• This is a *character-level language model*, not a word-level one

Cell s	e	ns	itiv	/e	to	p	05	sit	io	n	in	ı li	n	e:																																																			
The		S	0 1	e		i	m	p	0	r	t	a	n	С	е		0	f	1	:	1 6	9	C	r	· c) 5	5 5	i	. n	g		0	f	3	tf	he	2	В	e	r	e	z	ir	n a	1	1	i	es	5	i	n	1	tł	n e	2	f	a	c t	t						ł
tha	t		i t		p	1	a	i	n	1	у		a	n	d		i	n	dι	ıt	i c	i t	: 8	t)]	y	1	p	r	0	٧	е	d		tI	hε		f	a	1	1	a	c y	1	0	f	1	al	11		t	h	е	P	1	a	n	S	f	0	r				
cut	t	i	n g		0	f	f		t	h	е		е	n	e	m	у	•	s	r	- 6	e t	: 1	e	e a	l t		a	n	d		t	h	е	1	sc) u	n	d	n	e	S	S	0	f		t	he	9	0	n	1	у	p	0	S	S	ił	b 1	L e					
lin	e	1	o f		a	С	t	i	0	n	-	-	t	h	e		0	n	е	ł	(ι	Jt	: ι	IZ	2 0) \	1	a	n	d		t	h	e	f	ge	n	e	r	a	1		ma	as	S		0	f	t	h	е		aı	п	ı y										
dem	a	n	d e	d	-	-	n	a	m	е	1	у	,		s	i	m	p.	1)	1	t	t c)	f	C)]	. 1	. 0	W	1	t	h	е	Ą	e	n e	e m	У		u	р		٦	Γh	e		F	r e	e n	С	h	(CI	r c	W	d		f]	l e	e d					ľ
at i	a		c o	n	t	i	n	u	a	1	1	у		i	n	С	r	e	as	s i	i r	ı ç	1	S	s p) e	ee	d	1	a	n	d	1	a	1	1	i	t	s		e	n	e r	r g	y		W	a	5	d	i	r	e	c t	e	d		to	C					F	j
rea	С	h :	i n	g		i	t	s		g	0	a	1			I	t		f]	Le	ec	ł]	li	k	e	•	a	L	W	0	u	n	d	e	d	a	n	i	m	a	1	ê	a n	d		i	t	W	a	S		in	n p	0	S	s	it	b]	. e	87. I				
to	b	1	0 0	k		i	t	s		р	a	t	h			т	h	i	s	V	VE	a s	5	S	5 1	1 0) W	n	1	n	0	t		S	0	п	ı u	С	h		b	у	t	t h	e		a	r ı	r a	n	g	e ı	m e	e n	l t	S		i t	t						
mad	e	1	fo	r		С	r	0	s	s	i	n	g		a	s		b	y	V	vł	n a	ı t		t	: C	0 0	k		р	1	a	С	е	Ŧ	a t		t	h	е		b	r j	i d	g	е	S		W	h	e	n	1	t h	e		b	r i	i c	l g	e	S			
bro	k	e	d	0	W	n	,		u	n	a	r	m	е	d		S	0	1 (i t	L e	e r	- 5	5,		p) e	0	p	1	e		f	r	0 1	m	M	0	S	С	0	W	ê	a n	d		W	0 1	n e	n	1	W :	i t	t h	i i	С	h	i]	l c	l r	е	n			
who		W	e r	e		W	i	t	h		t	h	e		F	r	e	n	c ł	1	t	t r	6	a n	1 5	s p	0 0	r	t	,		a	1	1	-	- 0	a	r	r	i	e	d	(o n		b	У	١	/i	S		iı	n e	e r	t	i	a	e ·							
pre	s	S	e d		f	0	r	W	a	r	d		i	n	t	0	đ	b	0 8	a t	: :	5	ē	a r	1 0	1	i	. n	t	0		t	h	е	1	ic	e e	-	С	0	V	e	r e	e d		W	a	te	e r		a	n	d	C	li	d		n	o t	. ,	1				
sur	r	e	n d	e	r																																																												



http://karpathy.github.io/2015/05/21/rnn-eff

.

Interpreting RNNs

Pick one entry (cell) of the hidden state, highlight characters that cause that cell to take on a high value

• This is a *character-level language model*, not a word-level one

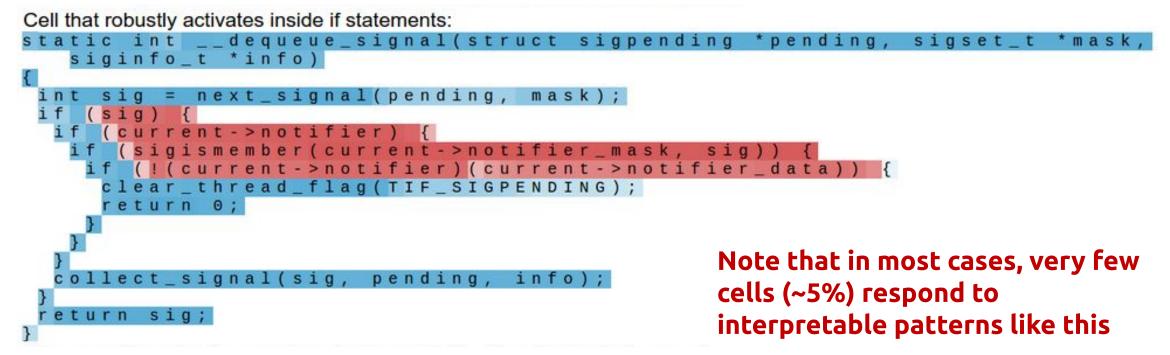
Cel	l t	ha	at	tu	ILL	าร	0	n	in	Si	d	e	qı	10	te	S	3-																																												
" Y																																																													
C O																																																													
di																																																													
s p																													de	8	8	i n	d		t	h	e I	r e	e f	0	r	е	-	i	ma	ı g	i	n	е	d	ł	(u	t	u	Z	0 1	V	t	: 0	ļ	be
a n	i	m	ı a	i t	e	d	R	b	y y	6	t	ł	1 6	2	5	6 8	a n	1 6		d	e	S	i	r	e	4																																			
кu	t	u	Z	: 0	V	1		S	h	r	U	1 0	1 (1 3	L r	1 (1	ł	i	S	Î	S	h	0	u	1	d	e	r s	s ,	c	r	e	p	1	i	e	đ	W	/i	t	h		h :	is	5	S	u	b	t	1 6	è	p	е	n	e 1	t r	r a	t	i	n g
s m																																																													

http://karpathy.github.io/2015/05/21/rnn-eff

Interpreting RNNs

Pick one entry (cell) of the hidden state, highlight characters that cause that cell to take on a high value

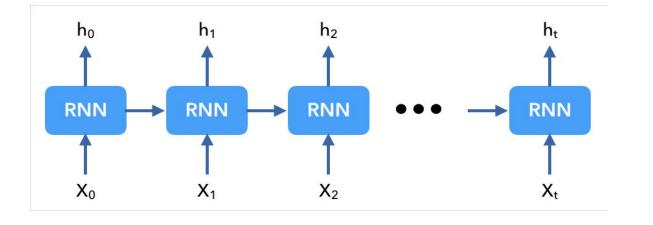
• This is a *character-level language model*, not a word-level one

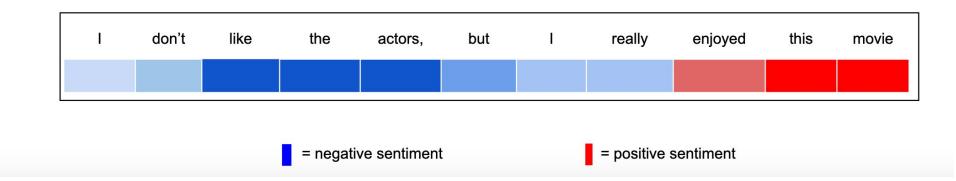


http://karpathy.github.io/2015/05/21/rnn-eff

Temporal output (RNNs)

Track the prediction of the RNN for one hidden unit at a time





Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks

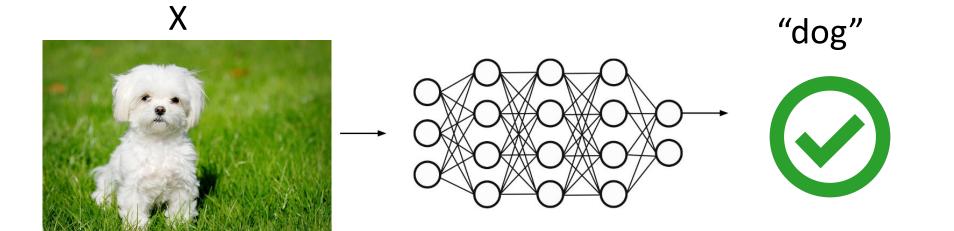
Today's goal – learn about interpretation in DL

(1) Model architecture based methods

(2) Gradient-based methods

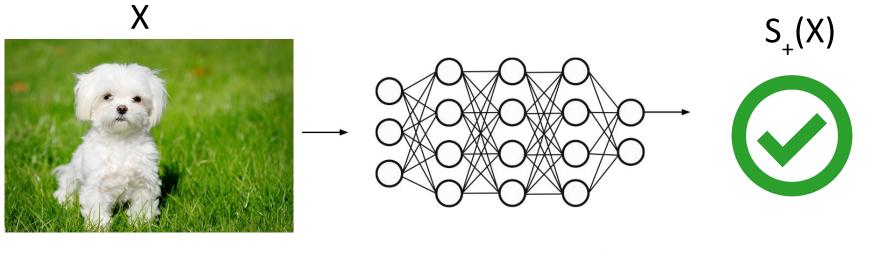
(3) Model agnostic methods

Saliency maps



Which pixels are most important for classification?

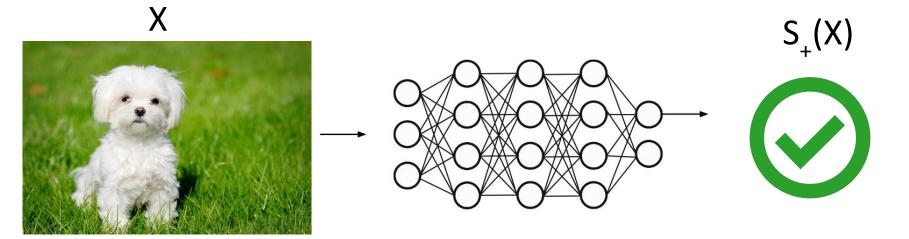
Saliency maps



$$S_{+}(X) \approx w^{T}X + b = \sum_{i=1}^{|X|} w_{i}x_{i}$$

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Saliency maps



$$S_{+}(X) \approx w^{T}X + b = \sum_{i=1}^{|X|} w_{i}x_{i}$$

$$w = \frac{\partial S_+}{\partial X} \bigg|_{X_0} = \text{``saliency map''}$$

How can we calculate this gradient?

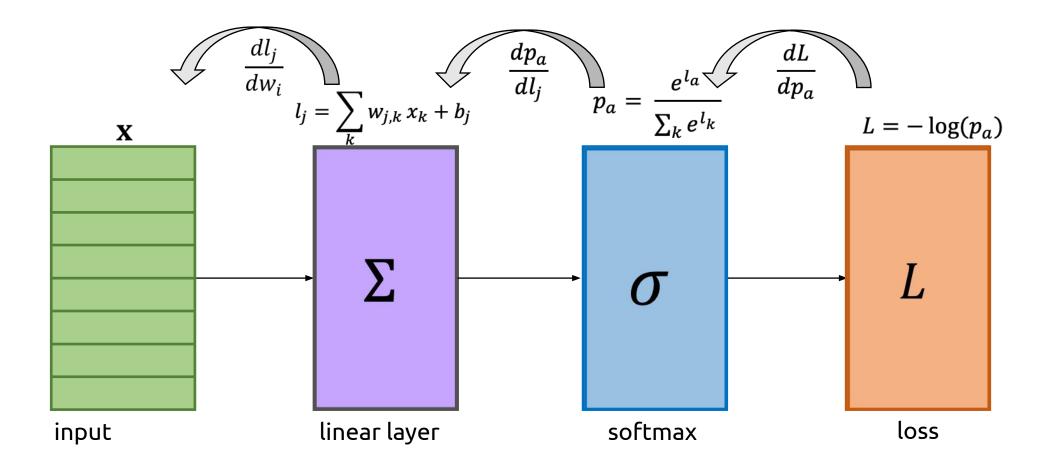
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Backpropagation is back!

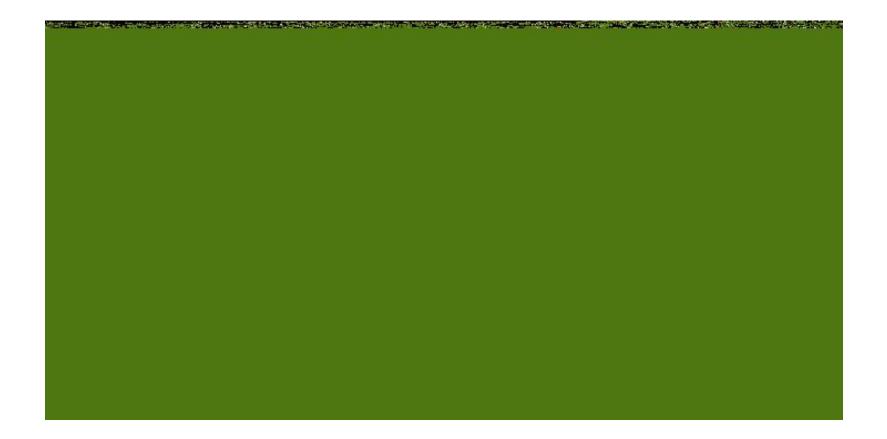
- The process of calculating gradients of functions via chain rule in a neural network
- Is a part of and **NOT the whole learning algorithm**
- Can be calculated with respect to any variable of choice
- For learning in neural networks we calculate gradients with respect to the weights

Backpropagation is back!

$$\Delta w_{j,i} = -\alpha \frac{\partial L}{\partial w_{j,i}} = -\alpha \cdot \frac{\partial L}{\partial p_a} \cdot \frac{\partial p_a}{\partial l_j} \cdot \frac{\partial l_j}{\partial w_{j,i}}$$

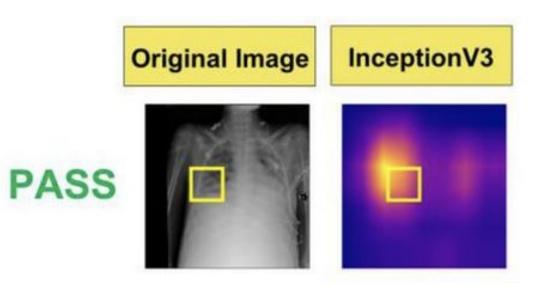


Saliency maps work well



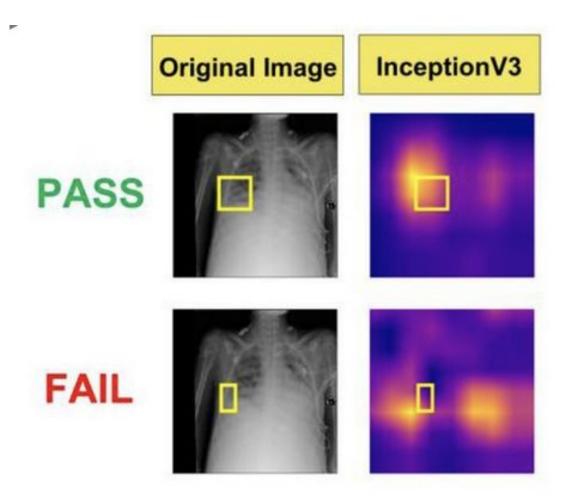
https://medium.datadriveninvestor.com/visualizing-neural-networks-using-saliency-maps-in-pytorch-289d8e244ab4

Saliency maps can also fail



Assessing the (Un)Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging

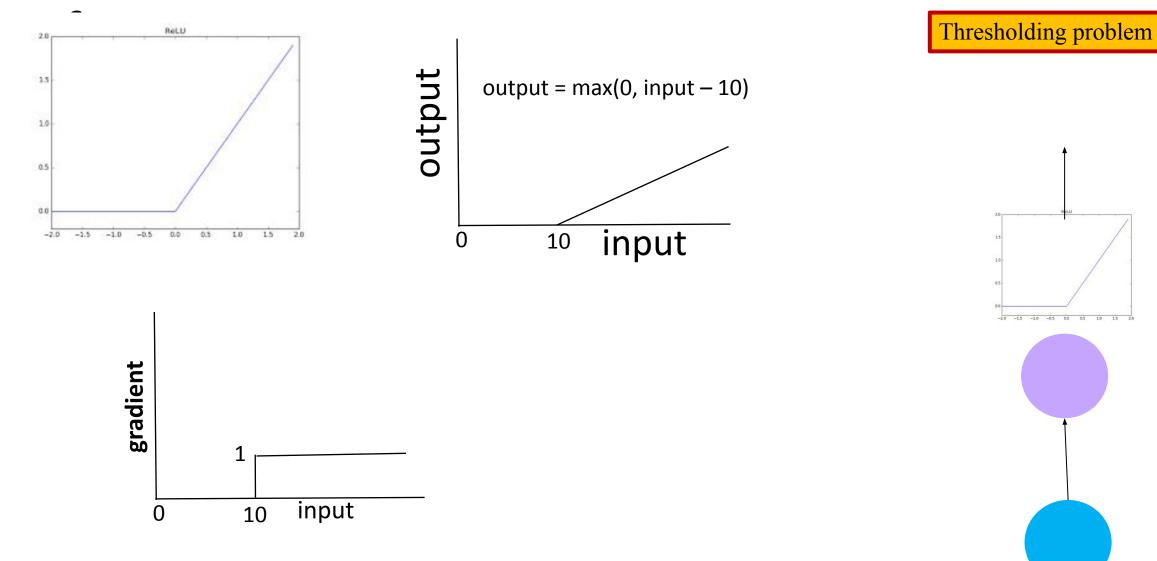
Saliency maps can also fail



What could be going wrong?

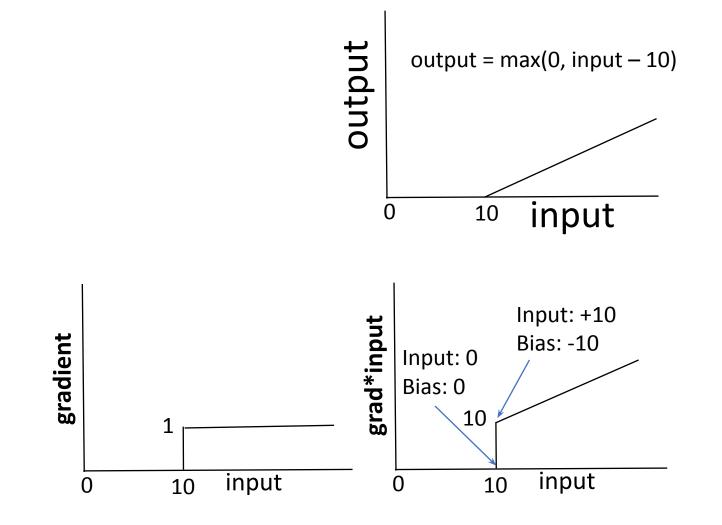
Assessing the (Un)Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging

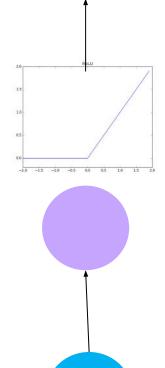
Backpropagation through activation



Learning Important Features Through Propagating Activation Differences

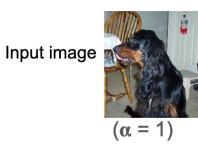
Gradient * Input





Learning Important Features Through Propagating Activation Differences

Integrated gradients



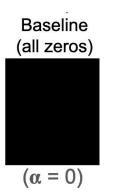
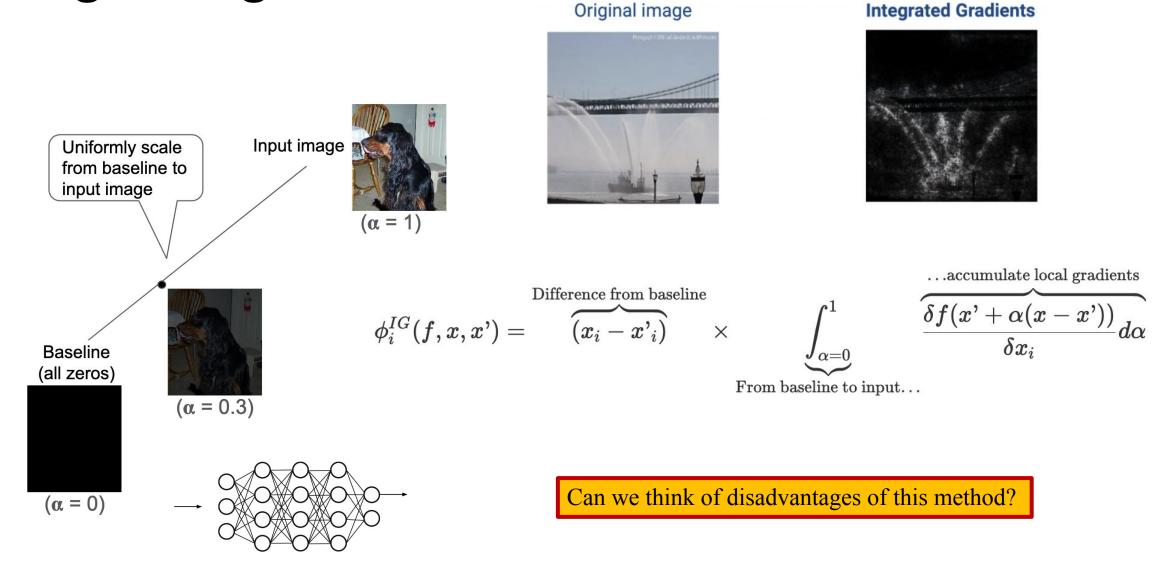
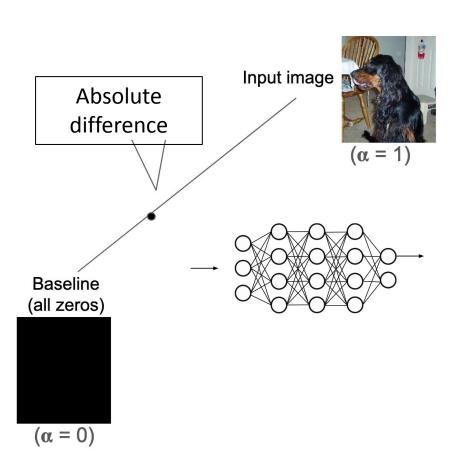


Image courtesy: http://theory.stanford.edu/~ataly/Talks/sri_attribution_talk_jun_2017.pdf

Integrated gradients



DeepLIFT

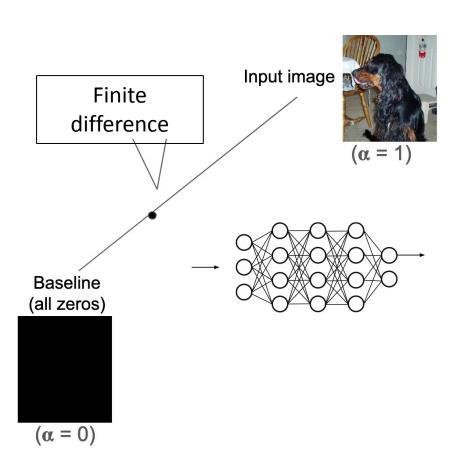


 Explain "difference from reference value" of output in terms of "difference from reference value" of inputs

Slide courtesy: https://drive.google.com/file/d/0B15F_QN41VQXbkVkcTVQYTVQNVE/view

Learning Important Features Through Propagating Activation Differences

DeepLIFT

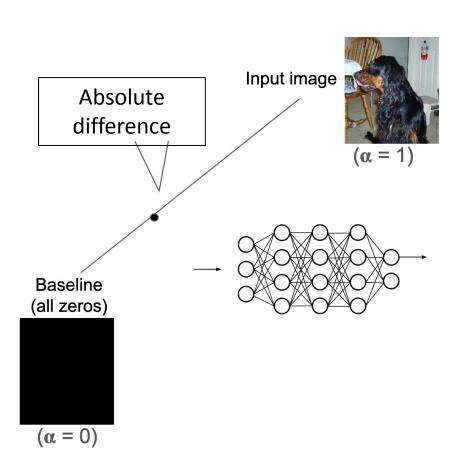


- Explain "difference from reference value" of output in terms of "difference from reference value" of inputs
- Target neuron t with diff-from-ref Δt

Slide courtesy: https://drive.google.com/file/d/0B15F_QN41VQXbkVkcTVQYTVQNVE/view

Learning Important Features Through Propagating Activation Differences

DeepLIFT



- Explain "difference from reference value" of output in terms of "difference from reference value" of inputs
- Target neuron t with diff-from-ref Δt
- "Blame" Δt on $\Delta x_1 ... \Delta x_n$
- Assign contributions $C_{\Delta x_i \Delta t}$ such that:

$$\sum_{i=1}^{n} C_{\Delta x_i \Delta t} = \Delta t$$

Learning Important Features Through Propagating Activation Differences

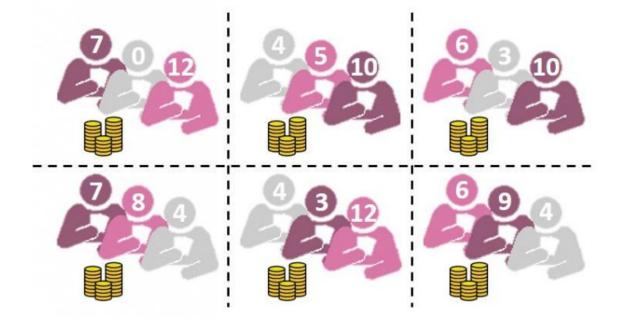
Slide courtesy: https://drive.google.com/file/d/0B15F_QN41VQXbkVkcTVQYTVQNVE/view

DeepLIFT (and Shapley values)

https://www.sia-partners.com/en/news-and-publications/from-our-experts/interpretable-machine-learning

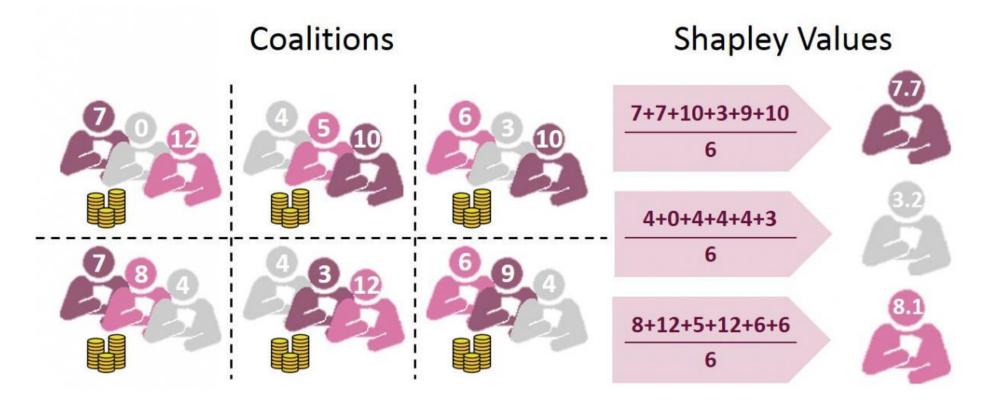
DeepLIFT (and Shapley values)

Coalitions



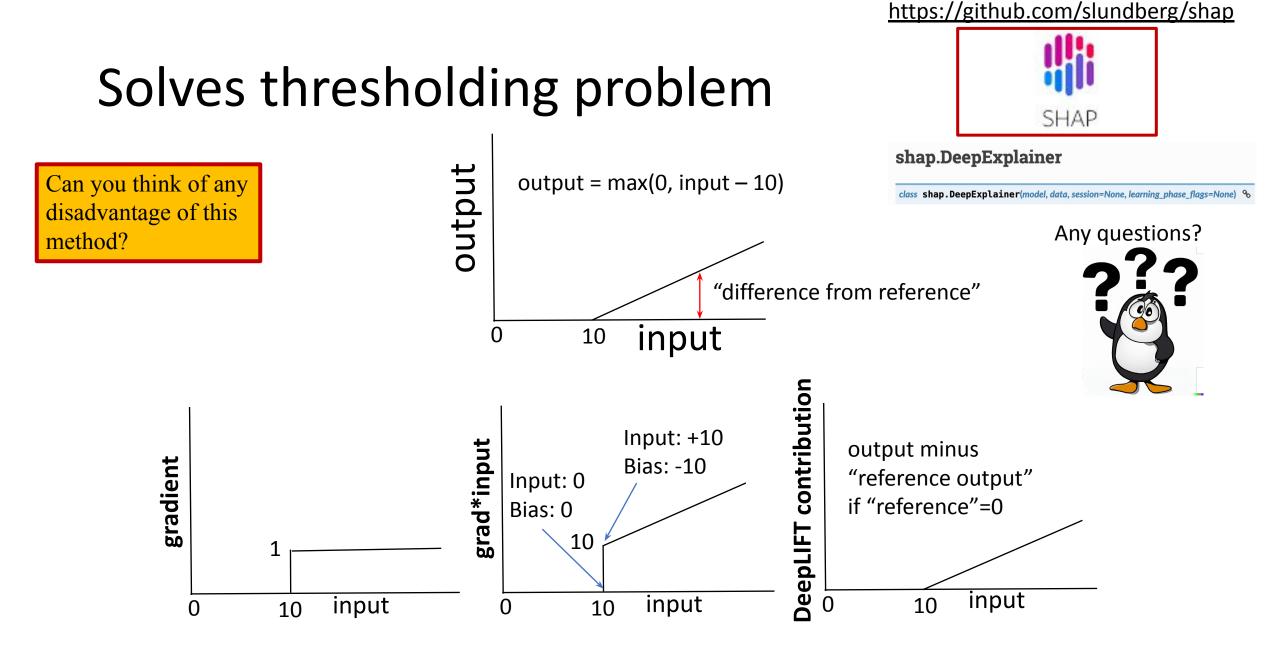
https://www.sia-partners.com/en/news-and-publications/from-our-experts/interpretable-machine-learning

DeepLIFT (and Shapley values)

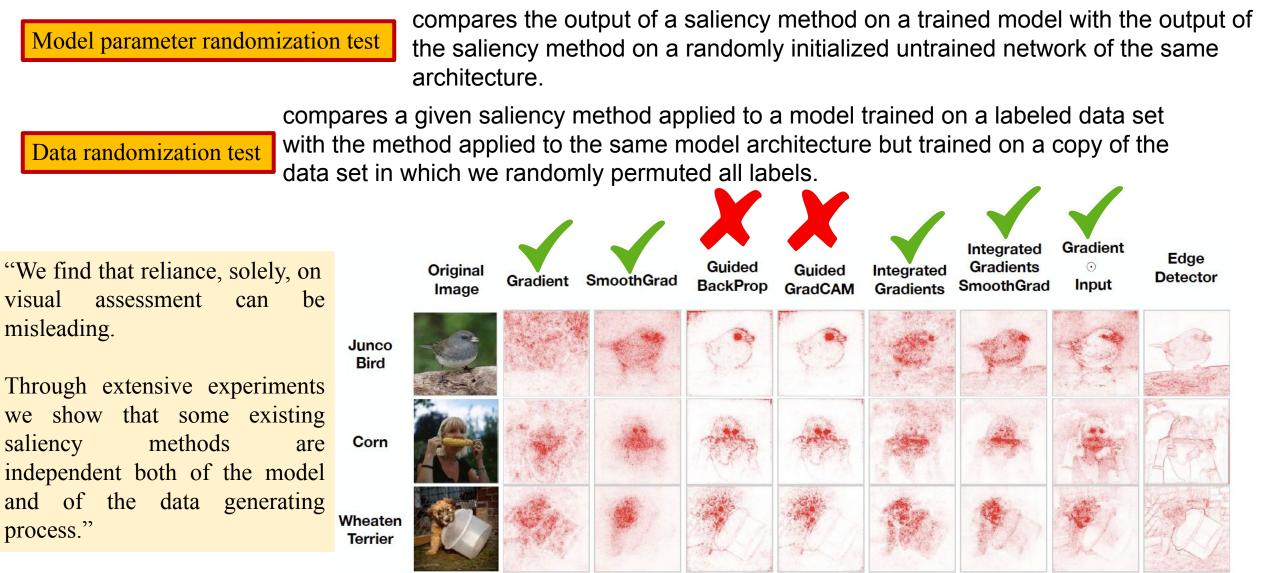


Shapley value not only considers the ability of each member, but also takes into account the cooperation among the members.

https://www.sia-partners.com/en/news-and-publications/from-our-experts/interpretable-machine-learning



Testing different gradient-based methods



Sanity Checks for Saliency Maps

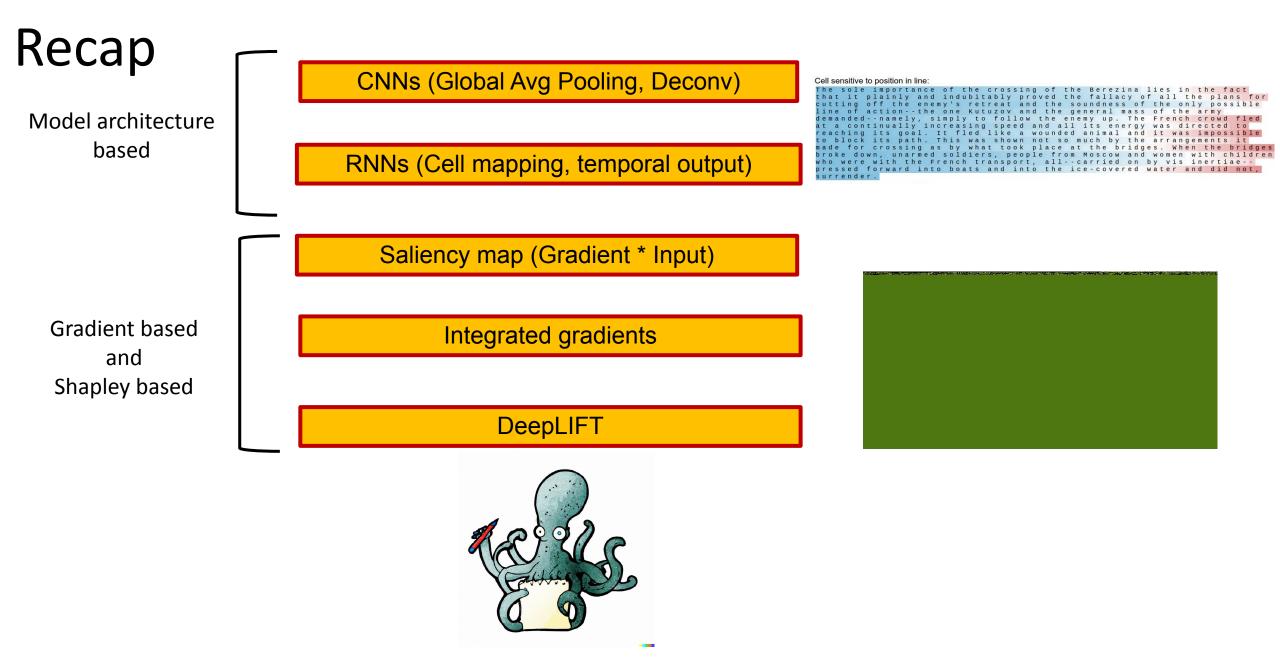
Today's goal – learn about interpretation in DL

(1) Model architecture based methods

(2) Gradient-based methods

(3) Model agnostic methods

Next time!



For in-depth reading refer to: <u>https://christophm.github.io/interpretable-ml-book/</u>