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| Fillin the mid-term feedback for extra 2 late days!

No quiz this week!

CSCl 1470/2470
Spring 2023

Ritambhara Singh

April 03, 2023
Monday

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”


https://openai.com/dall-e-2/

Interpretation in DL

(1) Model architecture based methods |« v v e w7 o ow me o
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(2) Gradient-based methods

(3) Model agnostic methods
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What is the simplest thing that comes to mind?

Task formulation

Which pixels are most important for
classification?



Perturbation-based methods

e Let's perturb inputs...

e omit or change words/parts of images, change word embedding
values, etc.
o...observe changed outputs...
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Perturbation-based methods

e Let's perturb inputs...

e omit or change words/parts of images, change word embedding
values, etc.
o...observe changed outputs...
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LIME

e LocalInterpretable Model-Agnostic Explanations (LIME)
o "Model-Agnostic”: treats every model as a black-box

e Let's perturb inputs...
® omit or change words/parts of images, change word embedding values, etc.

e ..observe changed outputs...
e ..and approximate the underlying model using a simple, interpretable
model (like a linear classifier)

e Interpretable because in Yw;x;, the weights say “how much a particular input matters”



LIME example

e What makes this picture of a tree frog “tree frog”-y to a neural
network?

Original Image



LIME example

e Perform a superpixel segmentation on the image
e Interpretable chunks in the image may be part of multiple
superpixels

e But no superpixel will contain multiple interpretable parts

Original Image Interpretable
Components


https://infoscience.epfl.ch/record/149300
https://ieeexplore.ieee.org/abstract/document/5995323

Can we think of disadvantages of
perturbation-based methods?

LIME example

® Different combinations of chunks put through the net yield different probabilities
® Learn alinear model to predict the probability from these different combos

® Chunks with high weight in the linear model “matter more” for the classi(ication result

°
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Any questions?

Attention as interpretation method
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A dog is standing on a hardwood floor. A stop sign is on a road with a
I mountain in the background.
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A little girl sitting on a bed with A group of Eeogle sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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Roadmap

Hello world *  Bonjour le monde

Supervised machine learning

Perceptron

Fully Connected Neural Networks

Convolutional Neural Networks

Language models

Recurrent Neural Networks

Transformers (Seq2seq)

© 0



Recap: What is Machine Learning?
Input: X Output: Y

"Cooking?”

ms) Function:f mmp




Recap: What is Machine Learning?

Supervised
Learning

Output: Y
"Cooking?”
Learned

function: f ™=

| f(X)0Y |




What if you don’t have any labels?

Input: X

Unsupervised
Learning

What can you learn
from just input data
without labels?




Today’s goal — learn about unsupervised
learning using deep learning models

(1) Unsupervised Learning

(2) Auto-encoders (AE)



Unsupervised Learning

* What can we learn from input data when there are no labels?
* We can only analyze the structure of the data itself
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Clustering

The organization of unlabeled data into similarity groups called
“clusters.”

A cluster is a collection of data items which are “similar’ between
them, and “dissimilar’ to data items in other clusters.

Data:










How does the machine do the clustering?

1. Proximity measure, either

Data: = similarity measure s(x;,x,): large if x;x, are similar
= dissimilarity(or distance) measure d(x; X,): small if x;,x, are similar
large d, small s large s, small d
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3. Algorithm to compute clustering
= For example, by optimizing the criterion function

http://www.mit.edu/~9.54/fall14/slides/Class13.pdf



Data in high dimension

Data:

What about an
image?

http://www.mit.edu/~9.54/fall14/slides/Class13.pdf

true label: 0




Curse of dimensionality in clustering [ What can we do?

Adding a dimension stretches the points across that dimension,
pushing them further apart.
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The points continue to spread out, when more dimensions are being
added, until they are equidistant from each other and distance is not
very meaningful.

https://www.kdd.org/exploration_files/parsons.pdf https://deltalepsilon.github.io/2019/Gotchas-with-clustering/



Dimensionality Reduction

Represent the data with fewer
dimensions

- The key idea: While the data
may exist in a high dimensional
space, it may actually lie along a
lower dimensional subspace

e Ex: data in R3 may lie along a
plane

* i.e. the intrinsic dimensionality of
the data is actually 2 (not 3)

24



Dimensionality Reduction using projection

. Data may not lie exactly on a
lower-dimensional subspace

- Can still represent it fairly well
(with some degree of error)

) 9 )

2D data projected to 1 dimension



An\gje’s.;on?s?
Dimensionality Reduction: Why?

* Lots of benefits to making the data lower-dimensional

* Many clustering algorithms behave better in lower dimensions
* Takes less storage/memory [ if you’'re trying to analyze a huge dataset
* More efficient to search using approximate nearest neighbor algorithms

* Easier to visualize (if you reduce the data to 2 or 3 dimensions)



Dimensionality Reduction: Visualization
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https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df

Dimensionality Reduction: Visualization

https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df g %



https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df

Dimensionality Reduction: Visualization

Have you already heard of a
dimensionality reduction method?

https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df



https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence. pdf
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Principal Component Analysis (PCA)

How to project 2D data down to 1D?

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence. pdf



Principal Component Analysis (PCA)

How to project 2D data down to 1D? | What is the issue here?
&
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https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence. pdf



Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

How to project 2D data down to 1D?

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence. pdf



Principal Component Analysis (PCA)
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https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence.pdf



Principal Component Analysis (PCA)

e Finds top k orthogonal directions that explain the most
variance in the data

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence. pdf



Principal Component Analysis (PCA)

* Finds top k orthogonal directions that explain the most
variance in the data

e st component: explains most variance along 1
dimension

* 2nd component: explains most of remaining variance
along next dimension that is orthogonal to 1st
dimension

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence. pdf



Any questions?

.. : ?
Principal Component Analysis (PCA) ??
e Finds top k orthogonal directions that explain the most _!

variance in the data

e st component: explains most variance along 1
dimension

e 2nd component: explains most of remaining variance
along next dimension that is orthogonal to 1st
dimension

e “FHatten” data to the top k dimensions to get lower
dimensional representation (if k < original dimension)

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence. pdf



3D example from:

https://setosa.io/ev/principal-component-analysis/

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence.pdf


https://setosa.io/ev/principal-component-analysis/

PCA reorients data so axes explain
variance in “decreasing order”
-> can “flatten” (project) data onto a
few axes that captures most variance

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence. pdf



Limitations of PCA

https://www.foodnetwork.com/recipes/food-network-kitchen/hot-cocoa-cake-roll-4553196



Limitations of PCA
2D Swiss Roll




Limitations of PCA
2D Swiss Roll

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence.pdf



Limitations of PCA
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https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence.pdf

Desired result!




How to dimension-reduce gnharly datasets?

« The Swiss Roll has an intrinsic
dimensionality of 1
* i.e. “how far along the curve a point
is”
* But PCA can’t figure this out
because the projection from R? to
R! is non-linear

* i.e. “unroll” the curve and lay it flat
along a number line

* How can we compute non-linear
projections?



“I hear these neural nets are

pretty good at learning
non-linear functions”

Can we use a neural net to learn a non-linear projection to a
lower-dimensional space?



A nonlinear projection neural net

 We could just use a regular neural net architecture (e.g. fully
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A nonlinear projection neural net

“ |dea: a compact representation z is a good non-linear projection of x

Compact
Representation

Z

Reconstruction

[ A > —_—> X
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Autoencoder

" Reconstruction loss: L(x, %) = (x —x)?

Compact
Representatlon
Reconstruction

| |

“Encoder” “Decoder”
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Autpencoder for MNIST

true label: 0
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This visualization? Autoencoder

https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df



https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df

Other Autoencoder applications

Denoising Autoencoder

Input: Noisy Images

Output: Restored Image
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Architecture and loss function I







