CSCl 1470/2470
Spring 2023

Ritambhara Singh

April 05, 2023
Wednesday

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”

https://openai.com/dall-e-2/

Review: Supervised v/s Unsupervised Learning

Unsupervised Learning

Supervised Learning

Data: (x, V) Data: x
X is data, y is label Just data, no labels!
Goal: Learn a function to map x—y Goal: Learn some underlying hidden

structure of the data

Examples: Classification,
regression, object detection, Examples: Clustering,

semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf

Review: Unsupervised Learning

O
X
x X
x’kx 3% " e
?ﬁk % =
X % &%
e
xXX '..
R X: X
Xx)?x >&x & 8 '.-,
X %
xg }++H=+£p &0 O
s R o
¥*. +
X s
4+ T ot CboO
& +4 +§+, W O (o)
++ 4 ﬁ +*t @ﬁ
A ¢ ¥ +
4+ b ++¥ #’
++-& + '.t it 4+
Iﬁ% o+ 4
THEE + ++a‘
+ ++ + +
i‘*“f‘ i. + + } * + +
P f’_ t_++ g .t
++ + £ ++
L S LA

K-means clustering

This image is CCO public domain

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples:|Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Review: Unsupervised Learning

Unsupervised Learning

component space

- SSSs: am=rs Data: x
i e e
T gSSEcoSseaness Just data, no labels!
y . —H e =
v PC1

T g Goal: Learn some underlying hidden
structure of the data
dimensionality reduction
Examples: Clustering,
dimensionality reduction,| feature
learning, density estimation, etc.

This image is CCO public domain

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf

Review: Autoencoder

.’ Reconstruction loss: L(x, %) = (x —Xx)?2

true label:

Compact
Representation
Z
X > —_—> —
“Encoder” “Decoder”

Reconstruction

X

Today’s goal — learn about variational
autoencoders (VAEs)

(1) Convolutional AEs
(2) Generative models

(3) Variational Autoencoders (VAES)

Convolutional Autoencoders

* CNNs are great for image processing in Neural Networks

* How can we build a convolutional autoencoder?

64

~

-

~
—
-

N\
N\
N\
\
~
-

60

linear layer softmax

output

Convolutional Autoencoders: Encoding

Same as Conv Nets from before:

Encoding

e

64

\

\
<D s [RelU
-3 +
- Pool

60

60

\

[N RelLU

~ N +
Pool

Encoded

Info

Autoencoders: Decoding

* Convolution as we know it only keeps resolution same or decreases it

* How do we go up in resolution?

Autoencoders: Transpose Convolution

* Convolution can be viewed as a matrix multiplication

* How do we represent it this way?

O|lW|O|DN

NI Pr|IO|HK
NI KR |O

R IO |IDN|W

Input

?

Kernel

57

60

66

61

Output

Autoencoders: Transpose Convolution

Step 1: Flatten the image into a column vector

211|103
0/|0]|1]2
311120
012|121

RININ|OIOIN|IFRP|IWIN|RP|O|IO|W|O|RFL]IDN

9

8

81 9|0

7

 Step 2: Unroll the kernel/filter

Autoencoders: Transpose Convolution

7

8(19(0]0]0]0

819(0(0]0]0]O0

5|6 |0

4

1(2|3|0(4|5]|16(0]7

O(1(2(3|0|4|5|6|0/|7
O(0j]O0|O0f1T]|2]|3|0

Oo(0j]O0O|O0f[O0]12|2|3|]0|4|5]|]6|0

Autoencoders: Transpose Convolution

Step 3: Matrix multiply
unrolled kernel with flattened

IMmage >
1
0
3
0
1]2|3|J]o]Ja]Js5]|]6|l]o]l7]|8]9]J]o]ojJo]lo]oO 0
1
ol1l2]3|]o]l4a|5]|]6]|]o|7]|]8]9]|]o]o]Jo]o > o
I
olojojJol1]2|3|]o]la|ls5|]6|]o]7]8]9]0O i
oJlojJojJo]Jo]J1}2]|]3|]o|a|5]|6|]o0o]7]8]? 2
0
0
2
2
1

57

50

66

61

Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and

image patch:

ojJ1}12]|]3|]0]14]|]5]16]|]0]7]8]9]1]0]J]0]J10]0O0
ojJjojojoj112|]3]1]0]4]5]16]0]17]8]19]0
ojojojojogr1}2]]3|]014]|]5]16]|]0]7]8]°

RININ]|OJIOINIR]IWINIR]|O|IO]W]IOIRIN

0]2]2

R IO |IDMN| W

14

Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and

2
image patch: ;
3
0 2
1|l213|]oJa]5]|6]o0o]7]18]9]|]0]J]o]J]o]o]o 0 |
1
° : : °°°°€32<j>0
0 ololzl2l3]lolals]le]lol7lslolo 3
1 3
0 olololalz2ls3slolalslselolz]ls]o 2 |
0
; 0
2
2
1

15

Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and
image patch:

o o =
o o N w

0 0 0
3|]0}]4)]5]16]0]7]8]9]0]O0]O0
0

0 6

3

o
o o = N
o
[
N
o
[~
(S
o
~
0o
o o o o

RININ]|OJIOINIR]IWINIR]|O|IO]W]IOIRIN

16

R IO |IDMN| W

Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and
image patch:

o o o =
o o = N

o o N w
o o w o

O|lW|O|D

RININ]|OJIOINIR]IWINIR]|O|IO]W]IOIRIN

17

Autoencoders: Transpose Convolution

Step 4: Finally reshape the output back into a
grid

Final Output
57 Image
50 57| 60
>
66 66| 61
6l

Autoencoders: Transpose Convolution

57

50

66

61

2
3
1
2

&3

112)]|]3}]0}]4])]5]|]6]|]0]|]7]8]9]0]J]0]J0]10]0O0

oj]1}]2)|]3|]0}]4]1]5]1]6]|]017]8]9%9]|]0]J]0}]JO0]O
OojJ]ojojo}j1}2]13]014]15]|]6]|]0]|]7]8]9]O0
OJ]ojJojJo}jo}j1}12]1]3|1]014]|]5]|6]|]01]7]8]°9

Autoencoders: Transpose Convolution

To upsample an image, we just
do the inverse of this operation.

What matrix do we use?

/

The transpose of the big
convolution matrix

11]0]J0}O
211|010
312|0]0
0|3|]0]}O
410|1]0
514121
6|15]3]|2
0O0|6|O0}|3
71014]|0
8|17|5]| 4
918|615
01]9]0]6
0j]0}|7]O0
01]0|8]7
00| 9|8
0J]0|JO0] 9

&3

Input image
flattened to
column vector

1

0

NA|O|WIN|F

10

14

15

22

26

14

23

26

Autoencoders: Transpose Convolution

Finally, reshape the output
vector into a grid to get the final
output image:

1

2

3

0

Final output image

6

10

1

2

3

4

14

3

6

10

14

3

15

22

15

1

22

26

26

6

14

23

26

14

23

26

)

Transpose Convolution in Tensorflow

tf.nn.conv2d transpose (input, filters, output shape, strides, padding=’'SAME’)

4D tensor of shape [batch, height, 4-D Tensor th/shape length 4 1D tensor representing \

width, in_channels] [height, width, output_channels, in_channels] the output shape. Stridgs aloqg String
each dimension representing
(list of integers) type of padding

D O C U m e n ta tl O n h e I'eI https://www.tensorflow.org/versions/r2.0/api docs/python/tf/nn/conv2d

22

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d

Transpose Convolution in Tensorflow

tf.nn.conv2d transpose (input, filters,output_ shape)) strides, padding=’'SAME’)

Why do we need to specify output size?

23

Specifying Output Size

- An image can be the result of the same

convolution on images of different resolution

. We need to specify which one we want.

57

60

66

61

Kernel

\

=

oOJjlw|lOo]|Dd

NN

R]J]O|IDN|W

=

=

R]J]O|IDN|W

O |JlOoO|lW]J]O|DN

oOlDd

O INMN|D

o

oO|lo|]oOo]|]oOo | o

Any questions?

Transpose Convolution in Keras

tf.keras.layers.Conv2DTranspose (filters, kernel size, strides, padding=’'SAME’)

== 7

Number of filters

(Integer) Size of Convolution Strides along String
Window (tuple) each dimension representing
(list of integers) type of padding

Note: Output Shape is inferred, but can be specified via the “output_padding” parameter

Documentation h ere. https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2DTranspose

25

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2DTranspose

Today’s goal — learn about variational
autoencoders (VAEs)

(1) Convolutional AEs
(2) Generative models

(3) Variational Autoencoders (VAESs)

Unsupervised Learning

. — Unsupervised Learnin
- Density estimation

— et oum Data: x

Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning,|density estimation,|etc.

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf

Unsupervised Learning

I Generative models I
. L n rvi Learni
- Density estimation Unsupervised Learning
- et oum Data: x
Just data, no labels!

- Sample generation

. =
i ! .
- b
= A -~
o i
4 ’ '
/P ' i)
s b\ [" 115 ‘
' N i
:
\
| < . L ,,
L S —— - ‘
| ” < i
el h
- ¢
% |
b 4
e %
R “ & s
X Tk
| - ﬁ

Training examples Model samples

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning,|density estimation,|etc.

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf

Discriminative v/s Generative models

Discriminative Model: Data: x
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Credit: UMich EECS498

Discriminative v/s Generative models

Discriminative Model:
Learn a probability
distribution p(y|x)

Discriminative model: No way for the model to
handle unreasonable inputs; it must give label
distributions for all images

Credit: UMich EECS498

Discriminative v/s Generative models

Generative Model:

Learn a probability
distribution p(x)

» Generative model: All possible images compete with each other

for probability mass
» Intuition: Generation should require deep understanding! Is a
dog more likely to sit or stand? How about 3-legged dog vs 3-

armed monkey?
* Model can “reject” unreasonable inputs by assigning them small

values
Credit: UMich EECS498

Generative Modeling Is:

1. A procedure for (approximately) sampling from
the distribution from which a dataset was
drawn

New data
5= pOInt

20

0.14
0.12

X2 0.10

0.08

05
0.06

*Probability density is the
relationship between observations
and their probability. 32

0.04

T T T T T T 0.0
9% 98 100 102 104 106 p (x)

Generative Modeling:

1. A procedure for (approximately) sampling from 2. A procedure for (approximately) evaluating the

the distribution from which a dataset was probability density of a datapoint under the
drawn distribution from which a dataset was drawn
New data
Ao~ pOInt

0.14
0.12

X2 0.10

p(x)

*Probability density is the
relationship between observations
and their probability. 33

0.08

0.06

x ~p() .

T T T T
96 98 100 102 104 106

These two views are both useful

1.

A procedure for (approximately) sampling from
the distribution from which a dataset was
drawn

Application: visual creativity

2.

A procedure for (approximately) evaluating the
probability density of a datapoint under the
distribution from which a dataset was drawn

Application: outlier detection

New data point
(inlier)

p(x") = large

X 010

New data point
(outlier)

p(x") = tiny

34

These two views are both useful

1. A procedure for (approximately) sampling from 2. A procedure for (approximately) evaluating the
the distribution from which a dataset was probability density of a datapoint under the
drawn distribution from which a dataset was drawn

Application: things are getting more

c@mpﬂeaggd&tated inclusivity:

fashion turns to ‘diverse’ Al models
ont v Application: outlier detection

Fashion brands including Levi's and Calvin Klein are having
custom Al models created to ‘supplement’ representation in
size, skin tone and age

New data point
(inlier)

p(x") = large

X 010

New data point
(outlier)

p(x") = tiny

0.08

0.06

0.04

The Guardian

35

https://www.theguardian.com/fashion/2023/apr/03/ai-virtual-models-fashion-brands

What are some example generative models?

Any probability distribution can be a generative
model

- You already know some of these!

E.g. The Gaussian Distribution

1 —
¢ p(x11o) = N(o)(x) = ==e 27
Sampling:

Sample from the unit normal distribution - r ~ N (0,1)
Return u +ro

36

Disadvantages of Gaussian distribution

* Can only represent distributions with a single
mode

* What if the distribution has multiple “peaks?”

* E.g. book prices (concentrates around different

price points if it's hardcover, paperback, e-book,
..

A

37

Better: Mixture of Gaussians

* Alinear combination of multiple :
individual Gaussian distributions

* p(x | W, U, G) = Ei WiN(ﬂi; O'i)(X)

- Sampling: 149 4
« Sample from the discrete weight M1
distribution w to choose a Gaussian 2
« Sample from that Gaussian as before iy
3 0

What about something like this?

* This doesn’t look like a linear
combination of Gaussians...

e ...but maybe it can be expressed
as a nonlinear function of
Gaussians?

| What can we do?

39

“I hear these neural nets are
pretty good at learning
non-linear functions” &

. 222
A Neural Generative Model

 Input: a point z € R" drawn from a normal distribution NV (u, o)

e OQutput: a point x € R™ distributed according to some more complex
distribution

Generator
‘ ‘

41

A Neural Generative Model

e Input: a point z € R" drawn from a normal distribution N (u, o)

e Output: a point x € R™ distributed according to some more complex
distribution

What are some
distributions that
look like this?

Generator
‘ ‘

42

A Neural Generative Model

e Input: a point z € R" drawn from a normal distribution NV (u, o)

e Output: a point x € R™ distributed according to some more complex
distribution

The distribution of

008
- g000
LT

Generator

Network

43

A Neural Generative Model

* Great! So...how do we train this thing?
* Let’s modify our autoencoder to achieve this

Generator
Network

The dlstrlbutlon of

Autoencoder

Let’s think for a bit — how to modify
the autoencoder to make it a
generative model?

Output
Input

Variational Autoencoders (VAES)

Variational Autoencoders (VAES)

* This looks almost exactly like an autoencoder...

e ...except that this bottleneck vector is randomly sampled
* We'll see how in a few slides

(0.2) |
* -3
1.2 |

.Y Output

Input
Random Vector

(sampled from
normal
distribution)

Variational Autoencoders (VAES)

* In fact, the encoder can produce multiple different random vectors...
*...which then lead to different outputs which are variants of the input

(0.2)

-3

1.2

0.5

1.2

-"5 2

(0.1)

-2

1.6

e 0.9 > :

1.3

-"1 2

F N

0.7

-4 4’ _—> ‘ ,

o3| — Y,
Input .-1-%?.
Random Vector
(sampled from

normal

distribution)

Variational Autoencoders (VAES)

* Why do this?
* We'll see shortly how this setup allows for a nice, stable learning algorithm
* (It’s actually just a small modification to how autoencoders are trained)

(02)

-3

1.2

05

1.2 . —l

-"5 2

(01)

-2
1.6
0.9 > — .
1.3
ST 2

—» —> ™
— v

N N
J

(0.
1.
0.
1

o =

(o2}

Input

Random Vector
(sampled from
normal
distribution)

Building up the VAE Architecture

If we were to describe an autoencoder functionally:

Output = Decoder(Encoder(Input))

\

J

Y

Latent Representation

Input

T

Encoder

/

*Latent representation ~ compressed representation

Latent
Representation

/

Decoder

T

Output

Building up the VAE Architecture

For variational autoencoders, we also do a random sampling operation
at the bottleneck

Output = Decoder(random_sample(Encoder(Input)))

\ /

Random
Sampling of
Latent Space

= T

Latent Decoder Output

Representation

Input Encoder

How does random sampling in latent space
lead to variation?

Input

T

Encoder

/

Latent

Representation

RanQonw Decoder
Sampling of
Latent Space
Encoder
Output S{'a/gwczgerd
O @ —

Decoder

\
/

Latent Space

Decoder

\

E

Output

« The random sampling should be
designed to produce random
points in latent space that are
close to the output of the
encoder

« Nearby points in the latent space
should decode to similar images

How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))
« We want the sample to be close to the encoder output
« One option: sample from a Gaussian centered at Encoder (Input)

I What can we modify?

\ /

Latent . Rancjom
Sampling of
Latent Space

= T

Input Encoder Decoder | | oytpyt

Representation

How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))
« We want the sample to be close to the encoder output
« One option: sample from a Gaussian centered at Encoder (Input)

« Use two dense layers to convert the encoder output into the mean
and standard deviation of the Gaussian

\ o y /
QQ’Q \
Input Encoder Latent | Decoder | | qutput
g Representation > N (u, 0) P
G/)J‘@

L
= T

Any questions?

n?9

How should random sample be defined? '

Q=
(1

- O

Input

T

Encoder

q-: H k H 3 g 3 g

/

Latent
Representation

_

/

N, 0)

\

Decoder

T

Output

Training a VAE

Two goals:
1. Reproduce an output similar to the input (Input = Output)
2. Have some variation in our output (Input _Output)

* Seems like two conflicting goals!
* How do we resolve these two goals?

\ (,z
OQ’Q U \
Input Encoder Latent __.| Decoder | | gyput
. Representation 2 N o) i
G/)\V@

=
/

\

A

Weighted Combination of Losses

L, =loss associated with producing output similar to input

L, =loss associated with producing output with some variation to
input

L =1Li+ M\L>

Total Loss: ‘

A € 0, oo

T

Oeo“"e Iz
Input Encoder Latent | Decoder | | oytpyt
E Representation > N, 0) >
G/)\YG

/ :

/

\

A

Recap

Generative
Modeling

Variational
Autoencoders
(VAEs)

Convolutional AEs

Generative modeling — formulation
and applications

Probability distributions = generative models

Generative modeling for complex
distributions

Modifying AEs

Input

VAE architecture

Encoder

Latent
Representation

N (u,0)

N

Decoder

Output

Extra material

More reading on Transpose Convolution

https://towardsdatascience.com/understand-transposed-convolutions-and-build-your-own-transposed-convolution-layer-from-scratch-4f5d97b2967

Caution: Checkerboard Artifacts

* Transpose convolution causes artifacts in output images

Great visual (and more!) from this article: https:/distill.pub/2016/deconv-checkerboard/

60

https://distill.pub/2016/deconv-checkerboard/

Caution: Checkerboard Artifacts

* Transpose convolution causes artifacts in output image
* Why? Some pixels get written to more often than others
*|s there a better way to upsample?

Great visual (and more!) from this article: https:/distill.pub/2016/deconv-checkerboard/ 61

https://distill.pub/2016/deconv-checkerboard/

Eliminating checkerboard artifacts

Step 1: Upsample using nearest neighbor interpolation:

@
3

Pixels in upsampled
image are assigned pixel
value of CLOSEST pixelin
original image

>

W wi kLK

WiwlEL -

=B ININ

=T e INIDN

Eliminating checkerboard artifacts

Step 2: Perform a convolution with SAME padding on the upsampled
image

200 200
20 N
Upsample ~ \‘: ReLU
(Nearest Neighbor oo P;ol
Interpolation) Output
Input — 200 Image
|mage 20 200
3

Dealing With it in Tensorflow

Layer to upsample the image by a factor of 5 in x and y using nearest
neighbor interpolation

tf.keras.layers.UpSampling2D (size=(5, 5), interpolation=’'nearest’)

Do a convolutional layer on the result

tf.keras.layers.Conv2D (filters = 1, kernel size = (10,10), padding = “SAME”)

64

Checkerboard Artifacts Resolved

With Transpose
Convolution

With Resize +
Convolution

Great visual (and more!) from this article: https:/distill.pub/2016/deconv-checkerboard/

65

https://distill.pub/2016/deconv-checkerboard/

