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DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”


https://openai.com/dall-e-2/

Review: Supervised v/s Unsupervised Learning

Unsupervised Learning

Supervised Learning

Data: (x, V) Data: x
X is data, y is label Just data, no labels!
Goal: Learn a function to map x—y Goal: Learn some underlying hidden

structure of the data

Examples: Classification,
regression, object detection, Examples: Clustering,

semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf



Review: Unsupervised Learning
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K-means clustering

This image is CCO public domain

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples:|Clustering,
dimensionality reduction, feature
learning, density estimation, etc.




Review: Unsupervised Learning

Unsupervised Learning

component space

- SSSs: am=rs Data: x
i e e
T gSSEcoSseaness Just data, no labels!
y . —H e =
v PC1

T g Goal: Learn some underlying hidden
structure of the data
dimensionality reduction
Examples: Clustering,
dimensionality reduction,| feature
learning, density estimation, etc.

This image is CCO public domain

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf



Review: Autoencoder

.’ Reconstruction loss: L(x, %) = (x —Xx)?2

true label:

Compact
Representation
Z
X > —_—> —
“Encoder” “Decoder”

Reconstruction

X



Today’s goal — learn about variational
autoencoders (VAEs)

(1) Convolutional AEs
(2) Generative models

(3) Variational Autoencoders (VAES)



Convolutional Autoencoders

* CNNs are great for image processing in Neural Networks

* How can we build a convolutional autoencoder?
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Convolutional Autoencoders: Encoding

Same as Conv Nets from before:

Encoding
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Autoencoders: Decoding

* Convolution as we know it only keeps resolution same or decreases it

* How do we go up in resolution?




Autoencoders: Transpose Convolution

* Convolution can be viewed as a matrix multiplication

* How do we represent it this way?
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Autoencoders: Transpose Convolution

Step 1: Flatten the image into a column vector
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 Step 2: Unroll the kernel/filter

Autoencoders: Transpose Convolution
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Autoencoders: Transpose Convolution

Step 3: Matrix multiply
unrolled kernel with flattened
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Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and

image patch:
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Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and

2
image patch: ;
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Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and
image patch:
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Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and
image patch:
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Autoencoders: Transpose Convolution

Step 4: Finally reshape the output back into a
grid

Final Output
57 Image
50 57| 60
>
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Autoencoders: Transpose Convolution
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Autoencoders: Transpose Convolution

To upsample an image, we just
do the inverse of this operation.

What matrix do we use?

/

The transpose of the big
convolution matrix
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Autoencoders: Transpose Convolution

Finally, reshape the output
vector into a grid to get the final
output image:
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Transpose Convolution in Tensorflow

tf.nn.conv2d transpose (input, filters, output shape, strides, padding=’'SAME’)

4D tensor of shape [batch, height, 4-D Tensor th/shape length 4 1D tensor representing \

width, in_channels] [height, width, output_channels, in_channels] the output shape. Stridgs aloqg String
each dimension representing
(list of integers) type of padding

D O C U m e n ta tl O n h e I'eI https://www.tensorflow.org/versions/r2.0/api docs/python/tf/nn/conv2d

22


https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d

Transpose Convolution in Tensorflow

tf.nn.conv2d transpose (input, filters,output_ shape)) strides, padding=’'SAME’)

Why do we need to specify output size?

23



Specifying Output Size

- An image can be the result of the same

convolution on images of different resolution

. We need to specify which one we want.
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Any questions?

Transpose Convolution in Keras

tf.keras.layers.Conv2DTranspose (filters, kernel size, strides, padding=’'SAME’)

== 7

Number of filters

(Integer) Size of Convolution Strides along String
Window (tuple) each dimension representing
(list of integers) type of padding

Note: Output Shape is inferred, but can be specified via the “output_padding” parameter

Documentation h ere. https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2DTranspose

25


https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2DTranspose

Today’s goal — learn about variational
autoencoders (VAEs)

(1) Convolutional AEs
(2) Generative models

(3) Variational Autoencoders (VAESs)



Unsupervised Learning

. — Unsupervised Learnin
- Density estimation

— et oum Data: x

Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning,|density estimation,|etc.

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf



Unsupervised Learning

I Generative models I
. L n rvi Learni
- Density estimation Unsupervised Learning
- et oum Data: x
Just data, no labels!

- Sample generation
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Training examples Model samples

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning,|density estimation,|etc.

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf



Discriminative v/s Generative models

Discriminative Model: Data: x
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Credit: UMich EECS498



Discriminative v/s Generative models

Discriminative Model:
Learn a probability
distribution p(y|x)

Discriminative model: No way for the model to
handle unreasonable inputs; it must give label
distributions for all images

Credit: UMich EECS498



Discriminative v/s Generative models

Generative Model:

Learn a probability
distribution p(x)

» Generative model: All possible images compete with each other

for probability mass
» Intuition: Generation should require deep understanding! Is a
dog more likely to sit or stand? How about 3-legged dog vs 3-

armed monkey?
* Model can “reject” unreasonable inputs by assigning them small

values
Credit: UMich EECS498



Generative Modeling Is:

1. A procedure for (approximately) sampling from
the distribution from which a dataset was
drawn

New data
5= pOInt

20
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*Probability density is the
relationship between observations
and their probability. 32
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Generative Modeling:

1. A procedure for (approximately) sampling from 2. A procedure for (approximately) evaluating the

the distribution from which a dataset was probability density of a datapoint under the
drawn distribution from which a dataset was drawn
New data
Ao~ pOInt

0.14
0.12

X2 0.10

p(x)

*Probability density is the
relationship between observations
and their probability. 33

0.08

0.06
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These two views are both useful

1.

A procedure for (approximately) sampling from
the distribution from which a dataset was
drawn

Application: visual creativity

2.

A procedure for (approximately) evaluating the
probability density of a datapoint under the
distribution from which a dataset was drawn

Application: outlier detection

New data point
(inlier)

p(x") = large

X 010

New data point
(outlier)

p(x") = tiny

34



These two views are both useful

1. A procedure for (approximately) sampling from 2. A procedure for (approximately) evaluating the
the distribution from which a dataset was probability density of a datapoint under the
drawn distribution from which a dataset was drawn

Application: things are getting more

c@mpﬂeaggd&tated inclusivity:

fashion turns to ‘diverse’ Al models . . . .
ont v Application: outlier detection

Fashion brands including Levi's and Calvin Klein are having
custom Al models created to ‘supplement’ representation in
size, skin tone and age

New data point
(inlier)

p(x") = large

X 010

New data point
(outlier)

p(x") = tiny

0.08

0.06

0.04

The Guardian

35


https://www.theguardian.com/fashion/2023/apr/03/ai-virtual-models-fashion-brands

What are some example generative models?

Any probability distribution can be a generative
model

- You already know some of these!

E.g. The Gaussian Distribution

1 —
¢ p(x11o) = N(o)(x) = ==e 27
Sampling:

Sample from the unit normal distribution - r ~ N (0,1)
Return u +ro

36



Disadvantages of Gaussian distribution

* Can only represent distributions with a single
mode

* What if the distribution has multiple “peaks?”

* E.g. book prices (concentrates around different

price points if it's hardcover, paperback, e-book,
..

A

37



Better: Mixture of Gaussians

* Alinear combination of multiple :
individual Gaussian distributions

* p(x | W, U, G) = Ei WiN(ﬂi; O'i)(X)

- Sampling: 149 4
« Sample from the discrete weight M1
distribution w to choose a Gaussian 2
« Sample from that Gaussian as before iy
3 0




What about something like this?

* This doesn’t look like a linear
combination of Gaussians...

e ...but maybe it can be expressed
as a nonlinear function of
Gaussians?

| What can we do?

39



“I hear these neural nets are
pretty good at learning
non-linear functions” &



. 222
A Neural Generative Model

 Input: a point z € R" drawn from a normal distribution NV (u, o)

e OQutput: a point x € R™ distributed according to some more complex
distribution

Generator
‘ ‘

41



A Neural Generative Model

e Input: a point z € R" drawn from a normal distribution N (u, o)

e Output: a point x € R™ distributed according to some more complex
distribution

What are some
distributions that
look like this?

Generator
‘ ‘

42



A Neural Generative Model

e Input: a point z € R" drawn from a normal distribution NV (u, o)

e Output: a point x € R™ distributed according to some more complex
distribution

The distribution of

008
- g000
LT

Generator

Network

43



A Neural Generative Model

* Great! So...how do we train this thing?
* Let’s modify our autoencoder to achieve this

Generator
Network

The dlstrlbutlon of



Autoencoder

Let’s think for a bit — how to modify
the autoencoder to make it a
generative model?

Output
Input




Variational Autoencoders (VAES)




Variational Autoencoders (VAES)

* This looks almost exactly like an autoencoder...

e ...except that this bottleneck vector is randomly sampled
* We'll see how in a few slides

(0.2 ) |
* -3
1.2 |

.Y Output

Input
Random Vector

(sampled from
normal
distribution)



Variational Autoencoders (VAES)

* In fact, the encoder can produce multiple different random vectors...
*...which then lead to different outputs which are variants of the input

(0.2 )

-3

1.2

0.5

1.2

-"5 2

(0.1 )

-2

1.6

e 0.9 > :

1.3

-"1 2

F N

0.7

-4 4’ _—> ‘ ,

o3| — Y,
Input .-1-%?.
Random Vector
(sampled from

normal

distribution)




Variational Autoencoders (VAES)

* Why do this?
* We'll see shortly how this setup allows for a nice, stable learning algorithm
* (It’s actually just a small modification to how autoencoders are trained)
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Building up the VAE Architecture

If we were to describe an autoencoder functionally:

Output = Decoder(Encoder(Input))
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Latent Representation
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Encoder
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*Latent representation ~ compressed representation
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Representation
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Building up the VAE Architecture

For variational autoencoders, we also do a random sampling operation
at the bottleneck

Output = Decoder(random_sample(Encoder(Input)))

\ /

Random
Sampling of
Latent Space

= T

Latent Decoder Output

Representation

Input Encoder




How does random sampling in latent space
lead to variation?

Input

T

Encoder

/

Latent

Representation

RanQonw Decoder
Sampling of
Latent Space
Encoder
Output S{'a/gwczgerd
O @ —

Decoder

\
/

Latent Space

Decoder

\

E

Output

« The random sampling should be
designed to produce random
points in latent space that are
close to the output of the
encoder

« Nearby points in the latent space
should decode to similar images



How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))
« We want the sample to be close to the encoder output
« One option: sample from a Gaussian centered at Encoder (Input)

I What can we modify?

\ /

Latent . Rancjom
Sampling of
Latent Space

= T

Input Encoder Decoder | | oytpyt

Representation




How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))
« We want the sample to be close to the encoder output
« One option: sample from a Gaussian centered at Encoder (Input)

« Use two dense layers to convert the encoder output into the mean
and standard deviation of the Gaussian

\ o y /
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g Representation > N (u, 0) P
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Any questions?

n?9

How should random sample be defined? '
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Training a VAE

Two goals:
1. Reproduce an output similar to the input (Input = Output)
2. Have some variation in our output (Input _Output)

* Seems like two conflicting goals!
* How do we resolve these two goals?
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Weighted Combination of Losses

L, =loss associated with producing output similar to input

L, =loss associated with producing output with some variation to
input

L =1Li+ M\L>

Total Loss: ‘

A € 0, oo

T

Oeo“"e Iz
Input Encoder Latent | Decoder | | oytpyt
E Representation > N, 0) >
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Recap

Generative
Modeling

Variational
Autoencoders
(VAEs)

Convolutional AEs

Generative modeling — formulation
and applications

Probability distributions = generative models

Generative modeling for complex
distributions

Modifying AEs

Input

VAE architecture

Encoder

Latent
Representation

N (u,0)

N

Decoder

Output




Extra material

More reading on Transpose Convolution



https://towardsdatascience.com/understand-transposed-convolutions-and-build-your-own-transposed-convolution-layer-from-scratch-4f5d97b2967

Caution: Checkerboard Artifacts

* Transpose convolution causes artifacts in output images

Great visual (and more!) from this article: https:/distill.pub/2016/deconv-checkerboard/

60


https://distill.pub/2016/deconv-checkerboard/

Caution: Checkerboard Artifacts

* Transpose convolution causes artifacts in output image
* Why? Some pixels get written to more often than others
*|s there a better way to upsample?

Great visual (and more!) from this article: https:/distill.pub/2016/deconv-checkerboard/ 61



https://distill.pub/2016/deconv-checkerboard/

Eliminating checkerboard artifacts

Step 1: Upsample using nearest neighbor interpolation:

@
3

Pixels in upsampled
image are assigned pixel
value of CLOSEST pixelin
original image
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Eliminating checkerboard artifacts

Step 2: Perform a convolution with SAME padding on the upsampled
image

200 200
20 N
Upsample ~ \‘: ReLU
(Nearest Neighbor oo P;ol
Interpolation) Output
Input — 200 Image
|mage 20 200
3




Dealing With it in Tensorflow

# Layer to upsample the image by a factor of 5 in x and y using nearest
# neighbor interpolation

tf.keras.layers.UpSampling2D (size=(5, 5), interpolation=’'nearest’)

# Do a convolutional layer on the result

tf.keras.layers.Conv2D (filters = 1, kernel size = (10,10), padding = “SAME”)

64



Checkerboard Artifacts Resolved

With Transpose
Convolution

With Resize +
Convolution

Great visual (and more!) from this article: https:/distill.pub/2016/deconv-checkerboard/
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https://distill.pub/2016/deconv-checkerboard/

