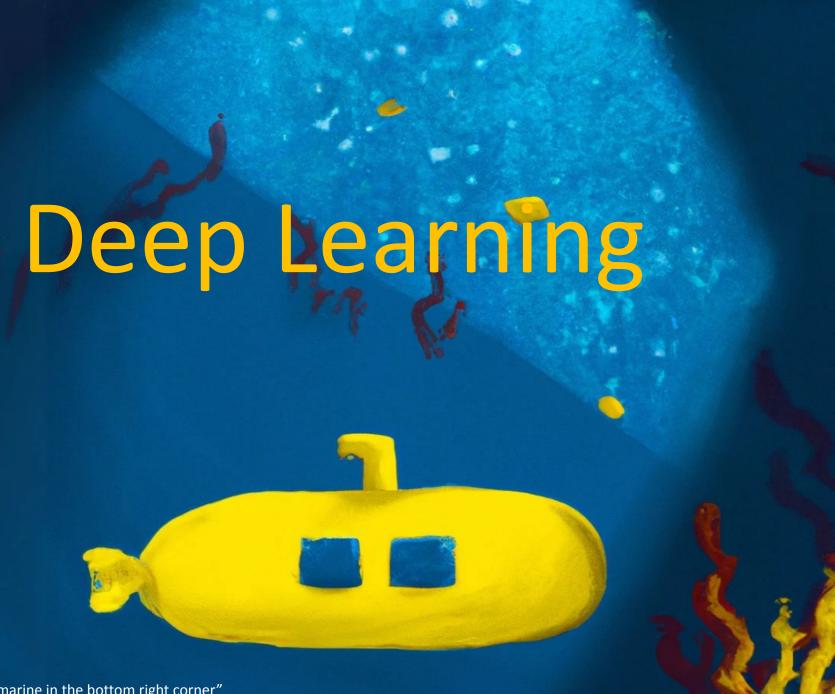
CSCI 1470/2470 Spring 2023

Ritambhara Singh

April 05, 2023 Wednesday



Review: Supervised v/s Unsupervised Learning

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x→y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning

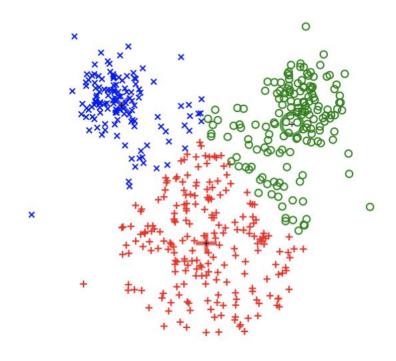
Data: x

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, *etc.*

Review: Unsupervised Learning



k-means clustering

This image is CC0 public domain

Unsupervised Learning

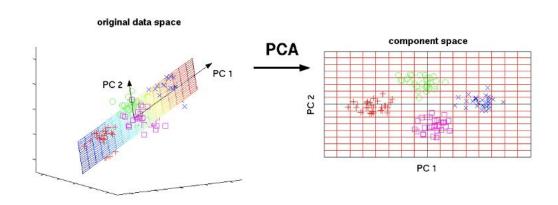
Data: X

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Review: Unsupervised Learning



dimensionality reduction

This image is CC0 public domain

Unsupervised Learning

Data: X

Just data, no labels!

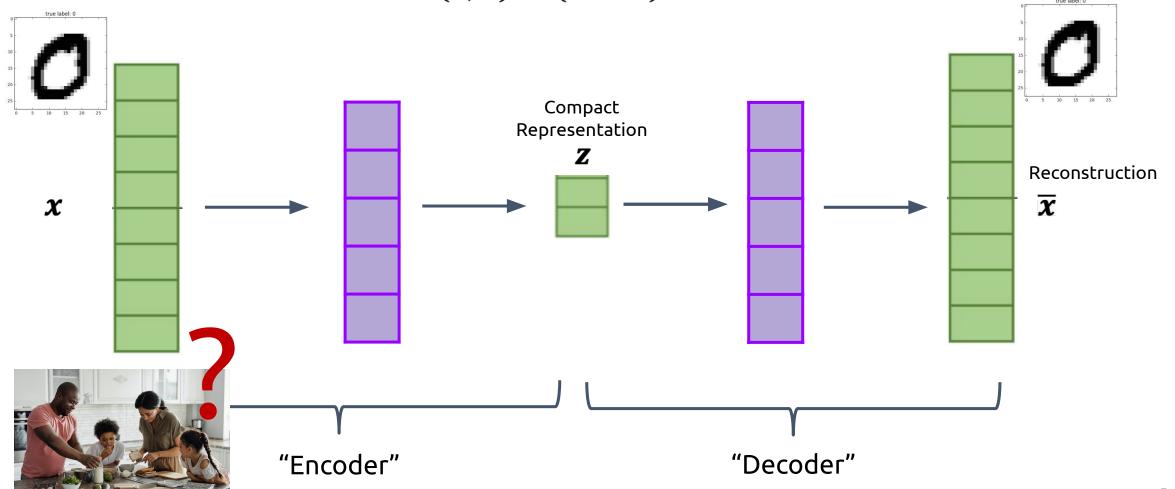
Goal: Learn some underlying hidden structure of the data

Examples: Clustering,

dimensionality reduction, feature learning, density estimation, etc.

Review: Autoencoder

• Reconstruction loss: $L(x, \overline{x}) = (x - \overline{x})^2$



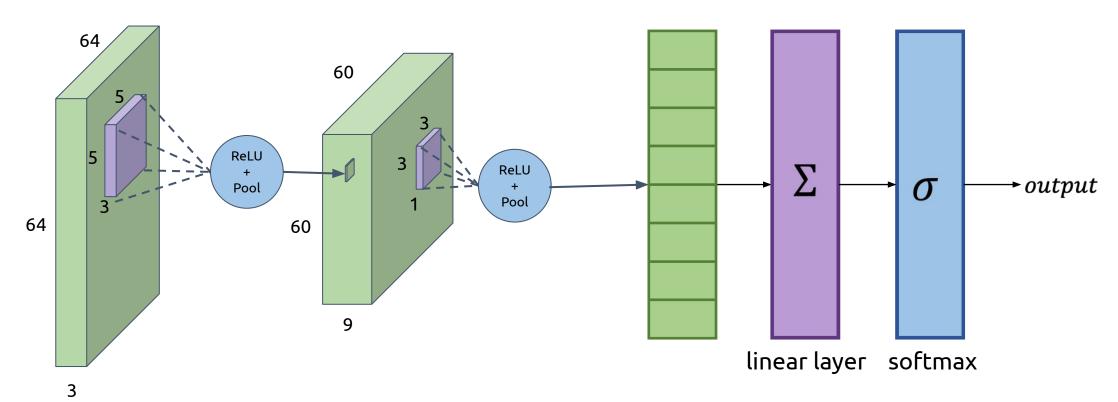
Today's goal – learn about variational autoencoders (VAEs)

(1) Convolutional AEs

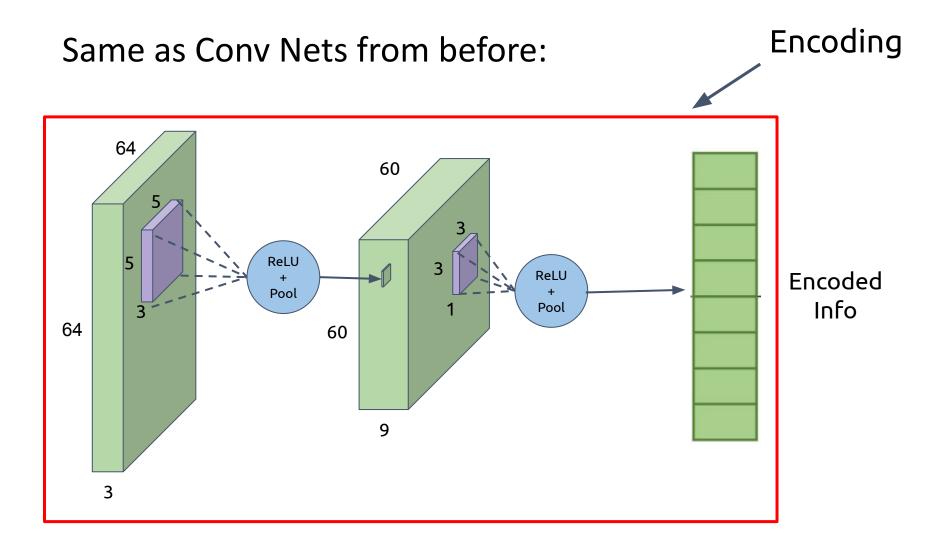
- (2) Generative models
- (3) Variational Autoencoders (VAEs)

Convolutional Autoencoders

- CNNs are great for image processing in Neural Networks
- How can we build a *convolutional* autoencoder?

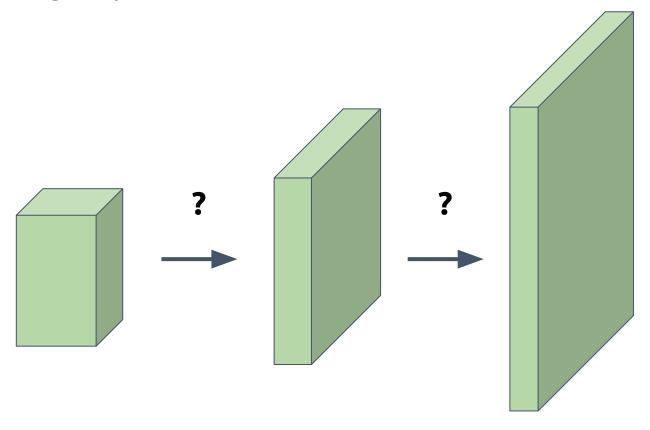


Convolutional Autoencoders: Encoding



Autoencoders: Decoding

- Convolution as we know it only keeps resolution same or decreases it
- How do we go up in resolution?

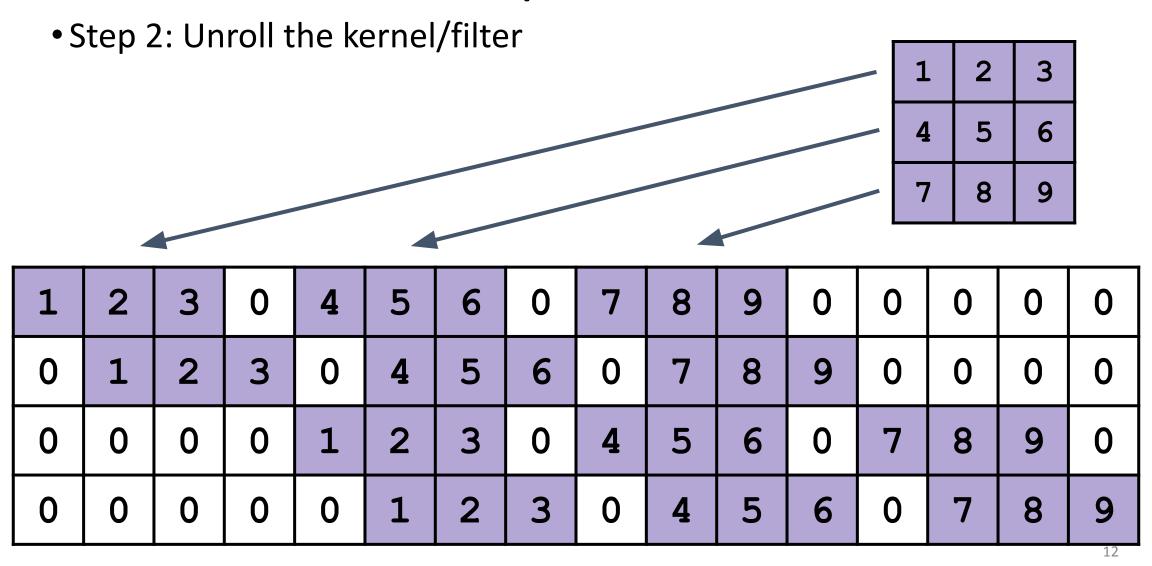


- Convolution can be viewed as a matrix multiplication
- How do we represent it this way?

2	1	0	3		1	2	3			
0	0	1	2				3		57	60
	0			7	4	5	6	_		
3	1	2	0)		_	66	61
	_			•	7	8	9			
0	2	2	1		,	0	9			
	Ing	out		I	ŀ	Kerne	l		Out	put

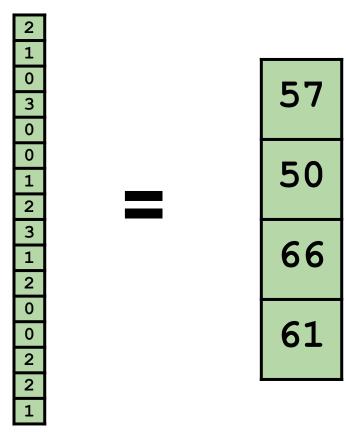
Step 1: Flatten the image into a column vector

2	1	0	3
0	0	1	2
3	1	2	0
0	2	2	1

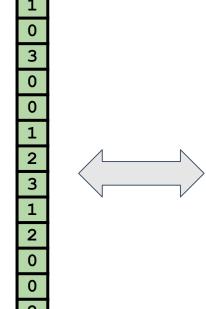


Step 3: Matrix multiply unrolled kernel with flattened image

1	2	3	0	4	5	6	0	7	8	9	0	0	0	0	0
0	1	2	3	0	4	5	6	0	7	8	9	0	0	0	0
0	0	0	0	1	2	3	0	4	5	6	0	7	8	9	0
0	0	0	0	0	1	2	3	0	4	5	6	0	7	8	9

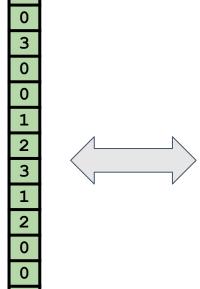


1	2	3	0	4	5	6	0	7	8	9	0	0	0	0	0
0	1	2	3	0	4	5	6	0	7	8	9	0	0	0	0
0	0	0	0	1	2	3	0	4	5	6	0	7	8	9	0
0	0	0	0	0	1	2	3	0	4	5	6	0	7	8	9



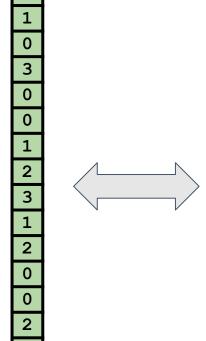
2	1	0	3
0	0	1	2
3	1	2	0
0	2	2	1

1	2	3	0	4	5	6	0	7	8	9	0	0	0	0	0
0	1	2	3	0	4	5	6	0	7	8	9	0	0	0	0
0	0	0	0	1	2	3	0	4	5	6	0	7	8	9	0
0	0	0	0	0	1	2	3	0	4	5	6	0	7	8	9



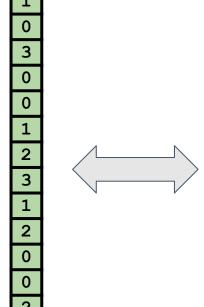
2	1	0	3
0	0	1	2
3	1	2	0
0	2	2	1

1	2	3	0	4	5	6	0	7	8	9	0	0	0	0	0
0	1	2	3	0	4	5	6	0	7	8	9	0	0	0	0
0	0	0	0	1	2	3	0	4	5	6	0	7	8	9	0
0	0	0	0	0	1	2	3	0	4	5	6	0	7	8	9



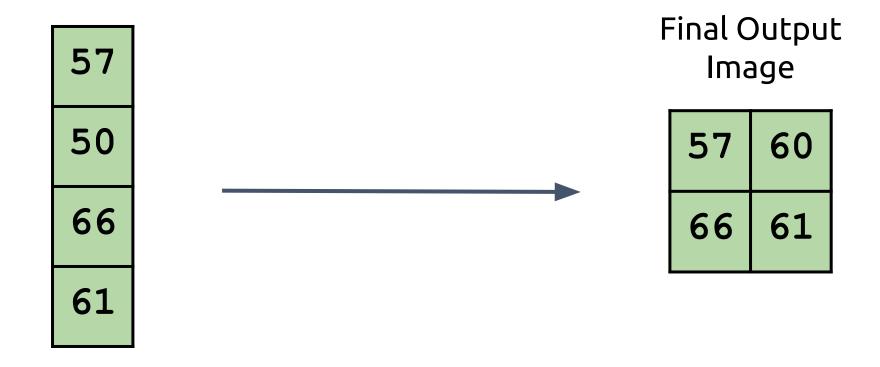
2	1	0	3
0	0	1	2
3	1	2	0
0	2	2	1

1	2	3	0	4	5	6	0	7	8	9	0	0	0	0	0
0	1	2	3	0	4	5	6	0	7	8	9	0	0	0	0
0	0	0	0	1	2	3	0	4	5	6	0	7	8	9	0
0	0	0	0	0	1	2	3	0	4	5	6	0	7	8	9

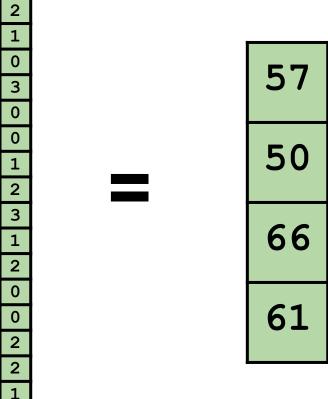


2	1	0	3
0	0	1	2
3	1	2	0
0	2	2	1

Step 4: Finally reshape the output back into a grid



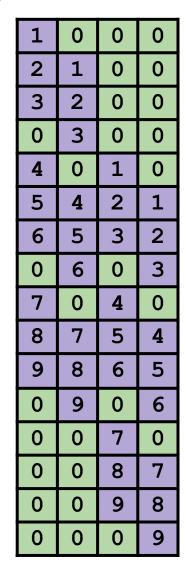
																	0	
1	2	3	0	4	5	6	0	7	8	9	0	0	0	0	0		0	
0	1	2	3	0	4	5	6	0	7	8	9	0	0	0	0	^^	1	
		_			_								Ů			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3	
0	0	0	0	1	2	3	0	4	5	6	0	7	8	9	0		1	
0	0	0	0	0	1	2	3	0	4	5	6	0	7	8	9		2	
																	0	
																	0	

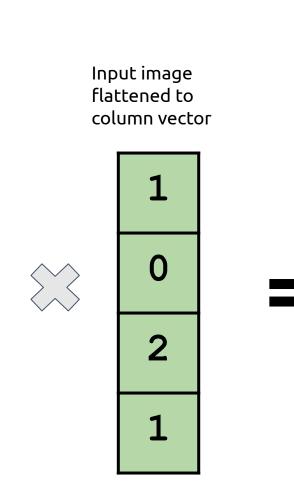


To upsample an image, we just do the inverse of this operation.

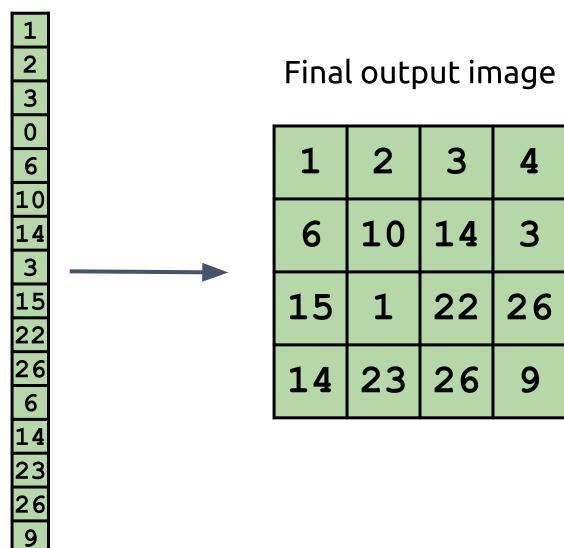
What matrix do we use?

The **transpose** of the big convolution matrix

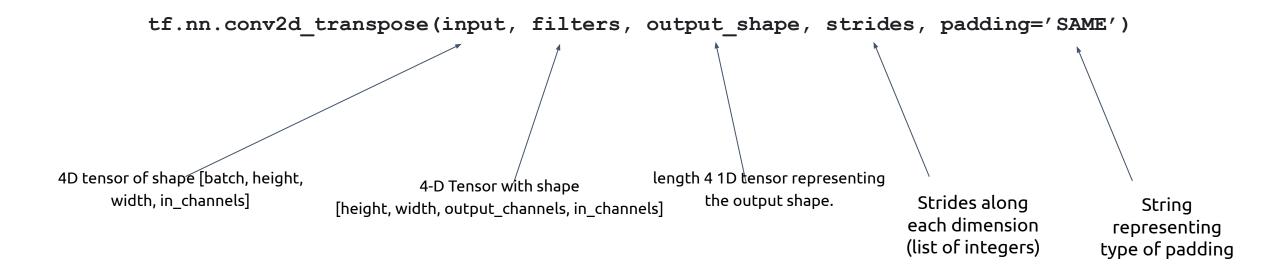




Finally, reshape the output vector into a grid to get the final output image:

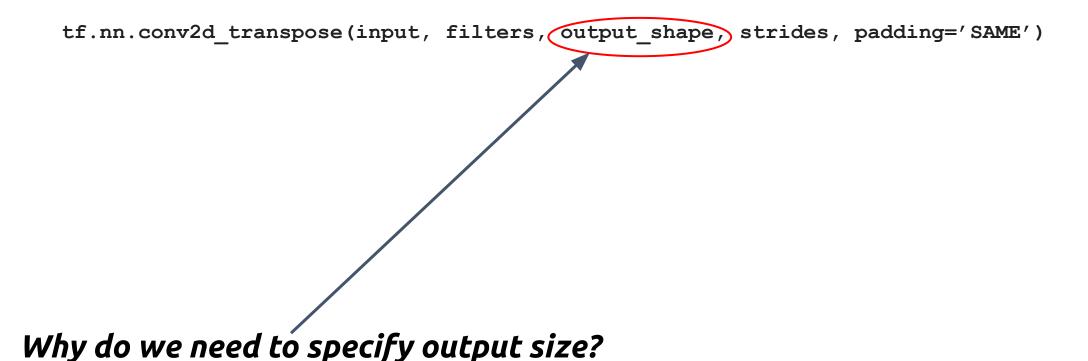


Transpose Convolution in Tensorflow



Documentation here: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d

Transpose Convolution in Tensorflow



Specifying Output Size

 An image can be the result of the same convolution on images of different resolution

We need to specify which one we want.

57	60
66	61

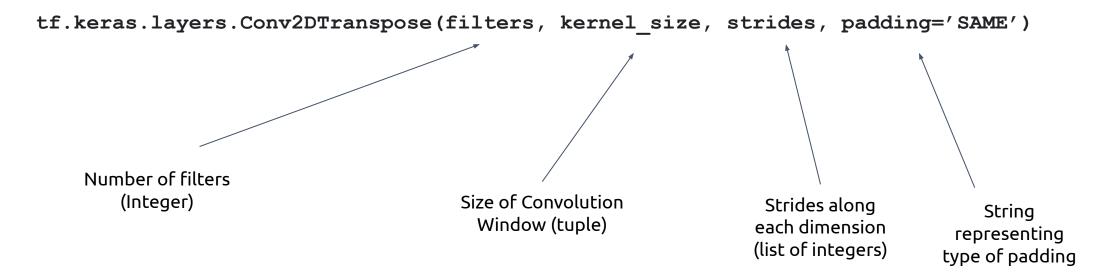
1	2	3
4	5	6
7	8	9

Kernel

2	1	0	3
0	0	1	2
3	1	2	0
0	2	2	1

2	1	0	3	0
0	0	1	2	0
3	1	2	0	0
0	2	2	1	0
0	0	0	0	0

Transpose Convolution in Keras



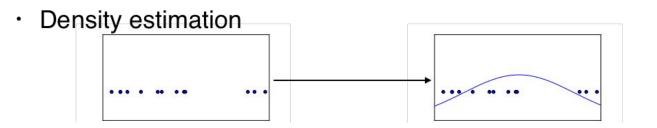
Note: Output Shape is inferred, but can be specified via the "output_padding" parameter

Documentation here: https://www.tensorflow.org/api docs/python/tf/keras/layers/Conv2DTranspose

Today's goal – learn about variational autoencoders (VAEs)

- (1) Convolutional AEs
- (2) Generative models
- (3) Variational Autoencoders (VAEs)

Unsupervised Learning



Unsupervised Learning

Data: X

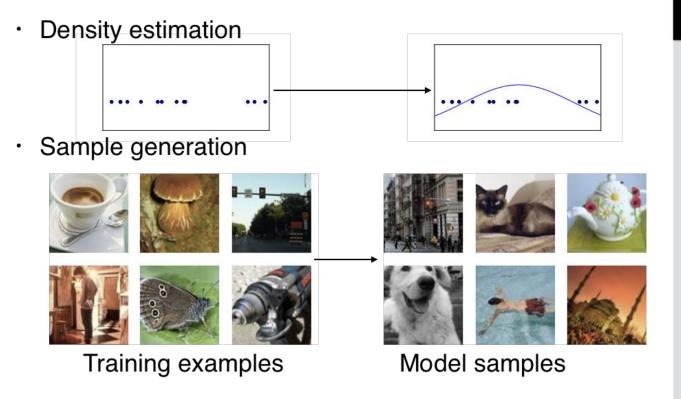
Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Unsupervised Learning

Generative models



Unsupervised Learning

Data: X

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Discriminative v/s Generative models

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Data: x

Label: y

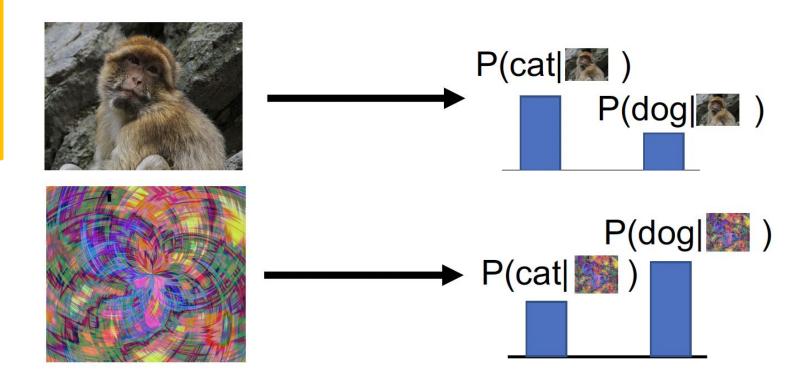
Cat

Discriminative v/s Generative models

Discriminative Model: Learn a probability

distribution p(y|x)

Generative Model: Learn a probability distribution p(x)



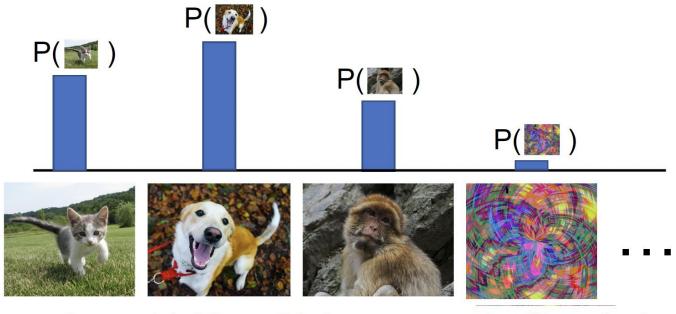
Discriminative model: No way for the model to handle unreasonable inputs; it must give label distributions for all images

Credit: UMich EECS498

Discriminative v/s Generative models

Discriminative Model: Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

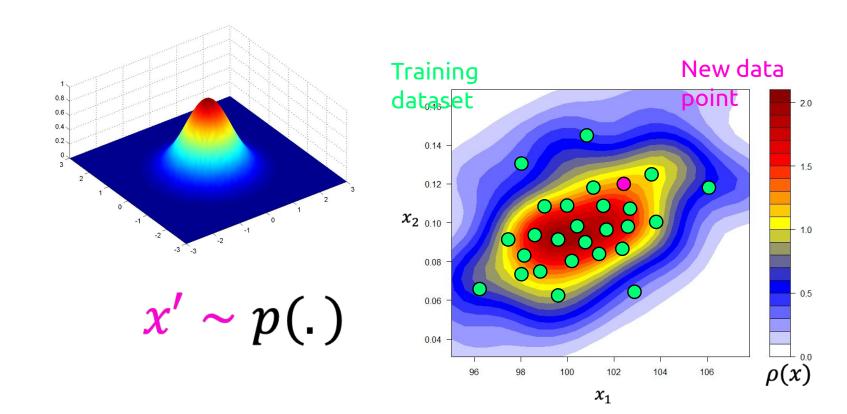


- Generative model: All possible images compete with each other for probability mass
- Intuition: Generation should require deep understanding! Is a dog more likely to sit or stand? How about 3-legged dog vs 3armed monkey?
- Model can "reject" unreasonable inputs by assigning them small values

Credit: UMich EECS498

Generative Modeling Is:

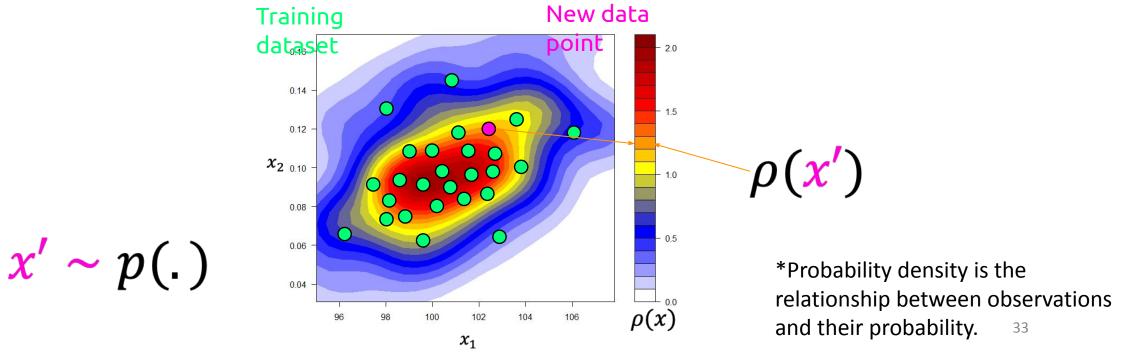
 A procedure for (approximately) sampling from the distribution from which a dataset was drawn



^{*}Probability density is the relationship between observations and their probability. 32

Generative Modeling:

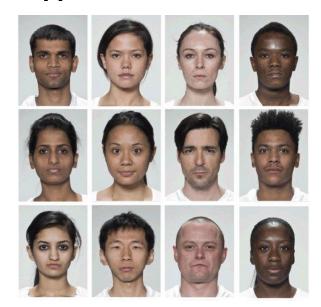
- 1. A procedure for (approximately) *sampling* from the distribution from which a dataset was drawn
- 2. A procedure for (approximately) *evaluating the probability density* of a datapoint under the distribution from which a dataset was drawn



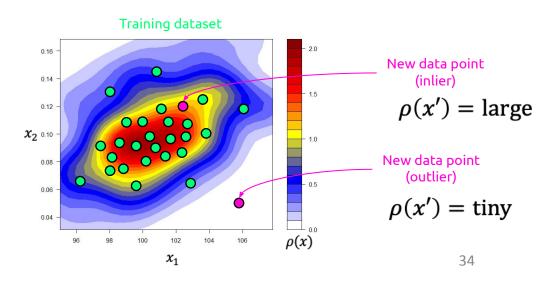
These two views are both useful

- 1. A procedure for (approximately) *sampling* from the distribution from which a dataset was drawn
- 2. A procedure for (approximately) *evaluating the probability density* of a datapoint under the distribution from which a dataset was drawn

Application: visual creativity



Application: outlier detection



These two views are both useful

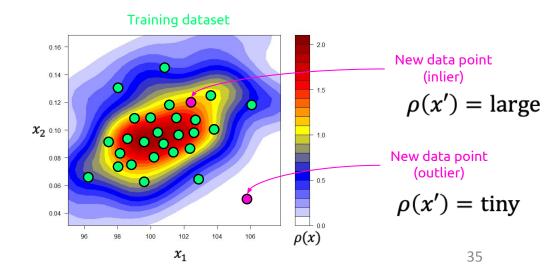
- 1. A procedure for (approximately) *sampling* from the distribution from which a dataset was drawn
- 2. A procedure for (approximately) *evaluating the probability density* of a datapoint under the distribution from which a dataset was drawn

Application: things are getting more complicated rated inclusivity: fashion turns to 'diverse' AI models

Fashion brands including Levi's and Calvin Klein are having custom AI models created to 'supplement' representation in size. skin tone and age

The Guardian

Application: outlier detection

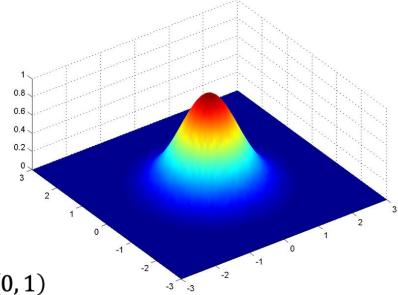


What are some example generative models?

- Any probability distribution can be a generative model
- You already know some of these!
- E.g. The Gaussian Distribution

•
$$p(x \mid \mu, \sigma) = \mathcal{N}(\mu, \sigma)(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

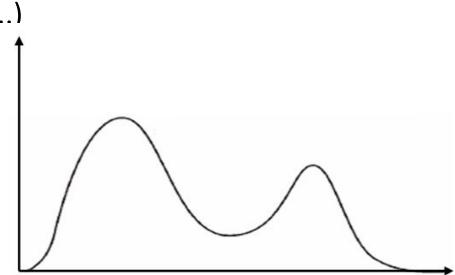
- Sampling:
 - Sample from the unit normal distribution $\rightarrow r \sim \mathcal{N}(0,1)$
 - Return $\mu + r\sigma$

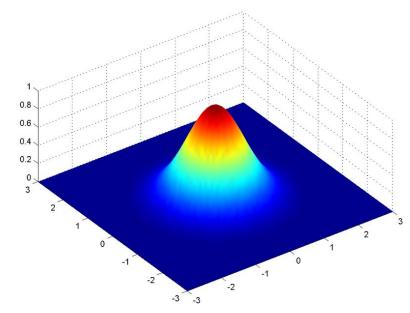


Disadvantages of Gaussian distribution

Can only represent distributions with a single mode

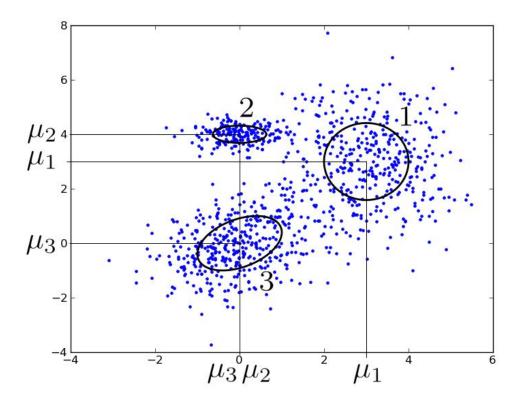
- What if the distribution has multiple "peaks?"
- E.g. book prices (concentrates around different price points if it's hardcover, paperback, e-book,



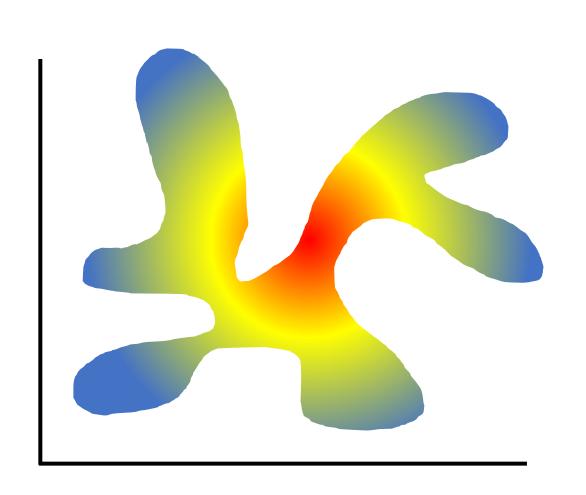


Better: *Mixture* of Gaussians

- A linear combination of multiple individual Gaussian distributions
 - $p(x \mid w, \mu, \sigma) = \sum_{i} w_{i} \mathcal{N}(\mu_{i}, \sigma_{i})(x)$
 - Sampling:
 - Sample from the discrete weight distribution w to choose a Gaussian
 - Sample from that Gaussian as before



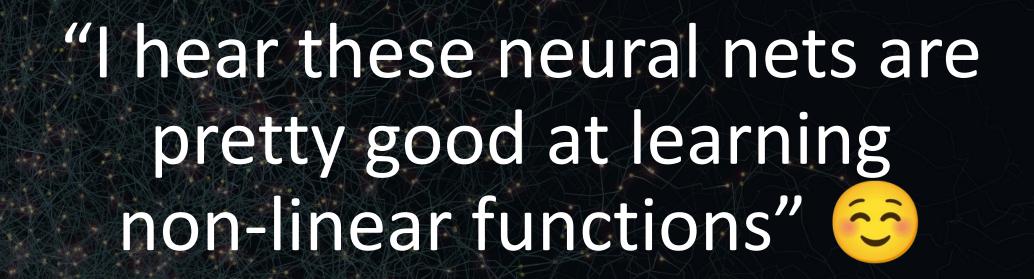
What about something like this?



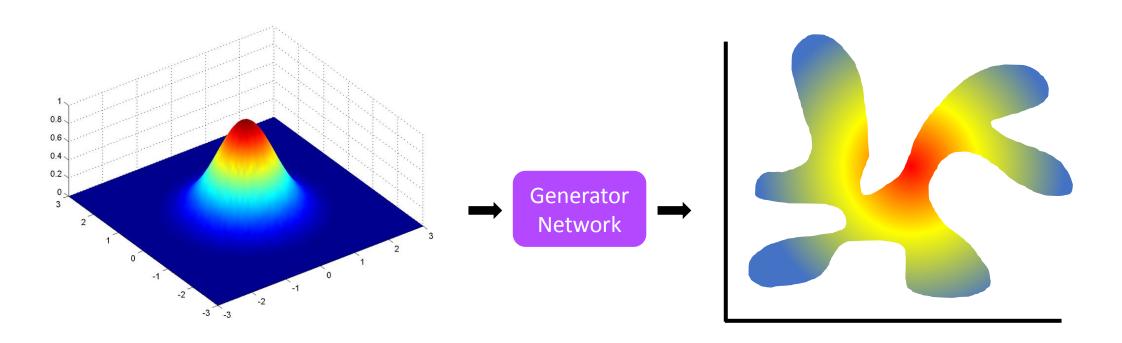
 This doesn't look like a linear combination of Gaussians...

 ...but maybe it can be expressed as a *nonlinear* function of Gaussians?

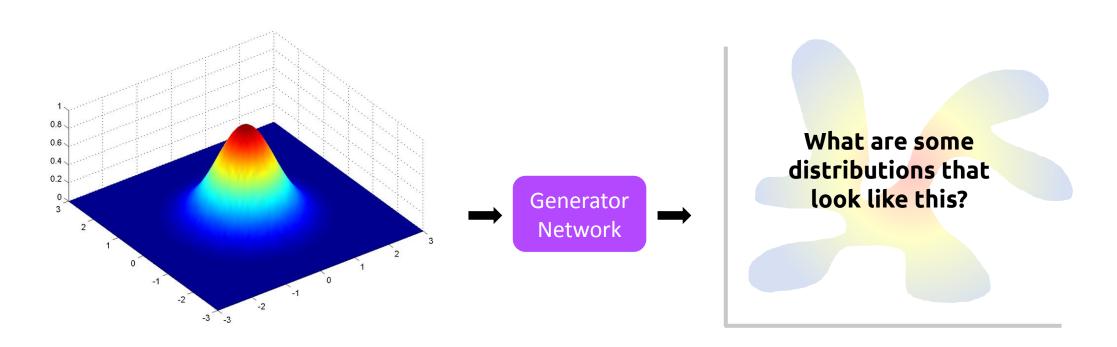
What can we do?



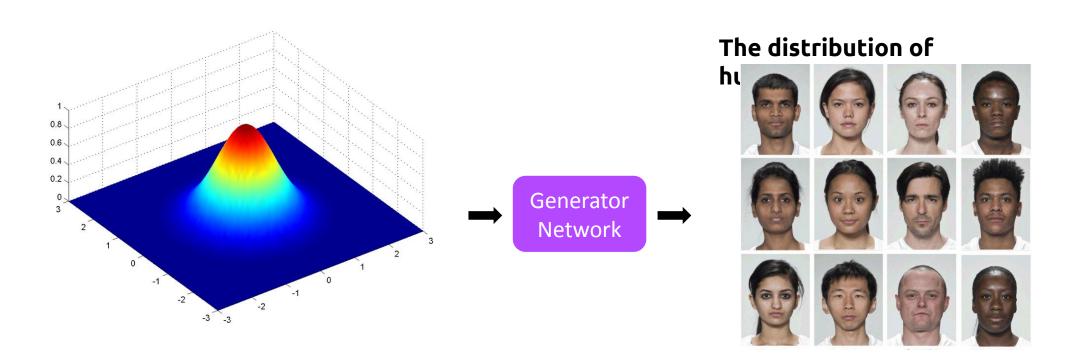
- Input: a point $z \in \mathbb{R}^n$ drawn from a normal distribution $\mathcal{N}(\mu, \sigma)$
- Output: a point $x \in \mathbb{R}^m$ distributed according to some more complex distribution



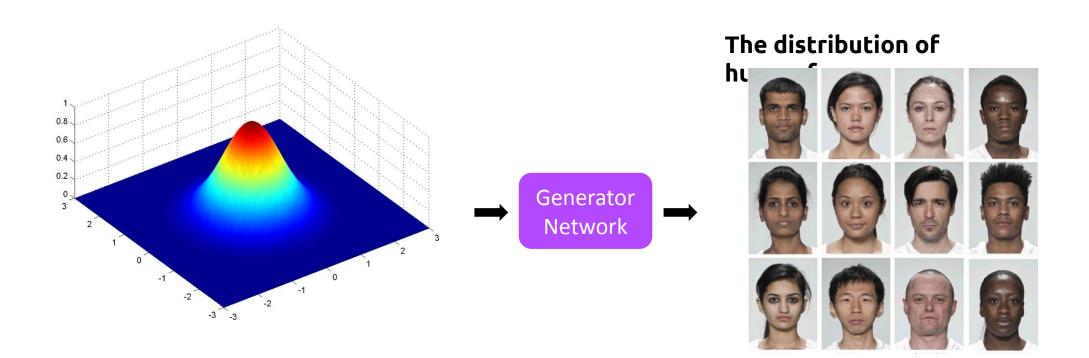
- Input: a point $z \in \mathbb{R}^n$ drawn from a normal distribution $\mathcal{N}(\mu, \sigma)$
- Output: a point $x \in \mathbb{R}^m$ distributed according to some more complex distribution



- Input: a point $z \in \mathbb{R}^n$ drawn from a normal distribution $\mathcal{N}(\mu, \sigma)$
- Output: a point $x \in \mathbb{R}^m$ distributed according to some more complex distribution

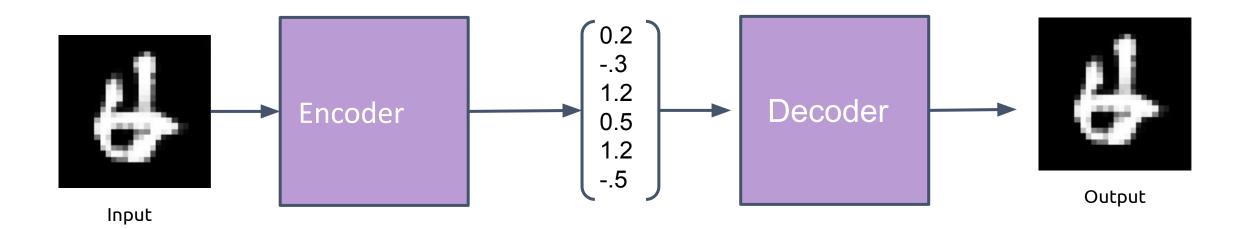


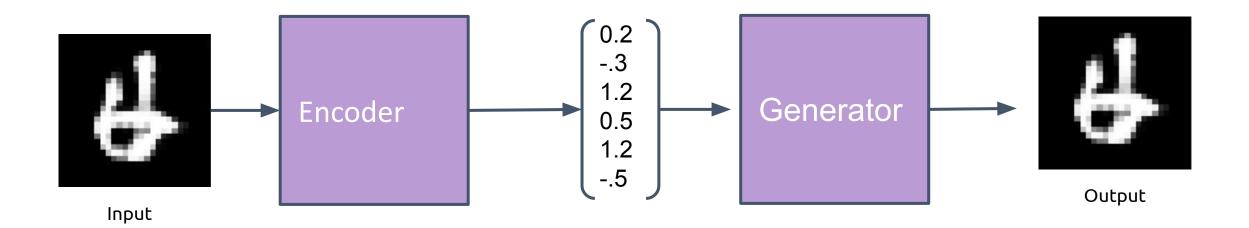
- Great! So...how do we train this thing?
 - Let's modify our autoencoder to achieve this



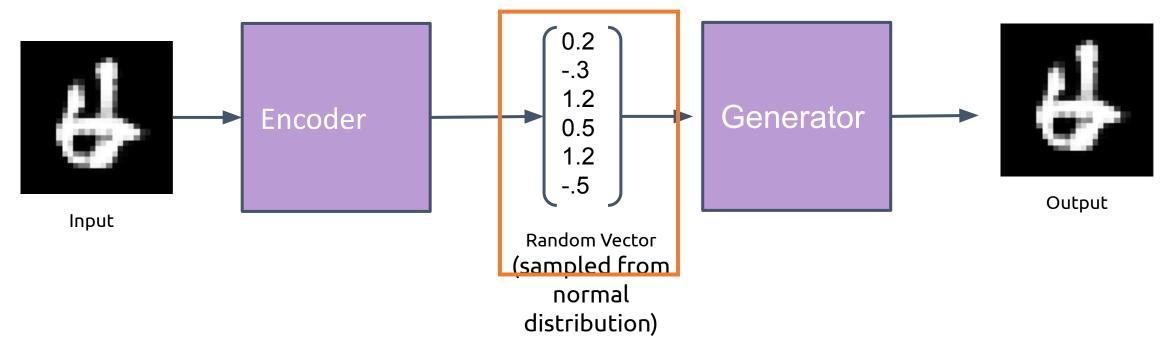
Autoencoder

Let's think for a bit – how to modify the autoencoder to make it a generative model?

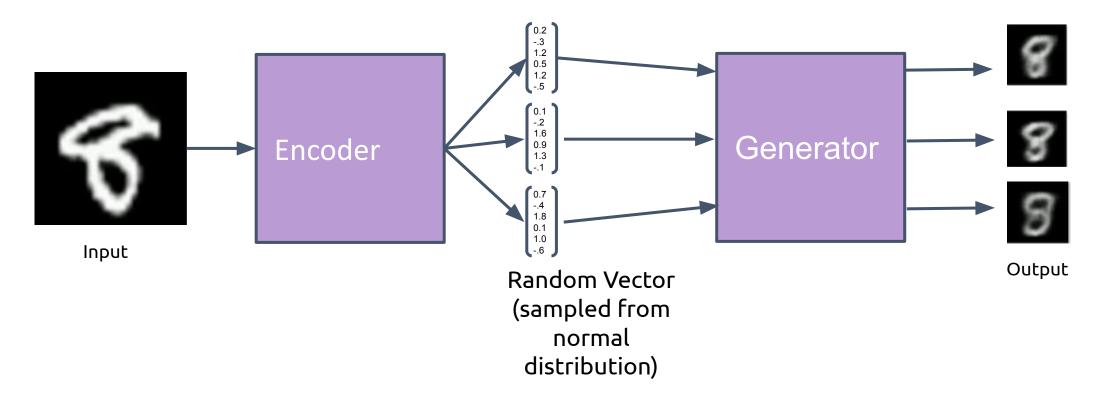




- This looks almost exactly like an autoencoder...
- ...except that this bottleneck vector is randomly sampled
 - We'll see how in a few slides

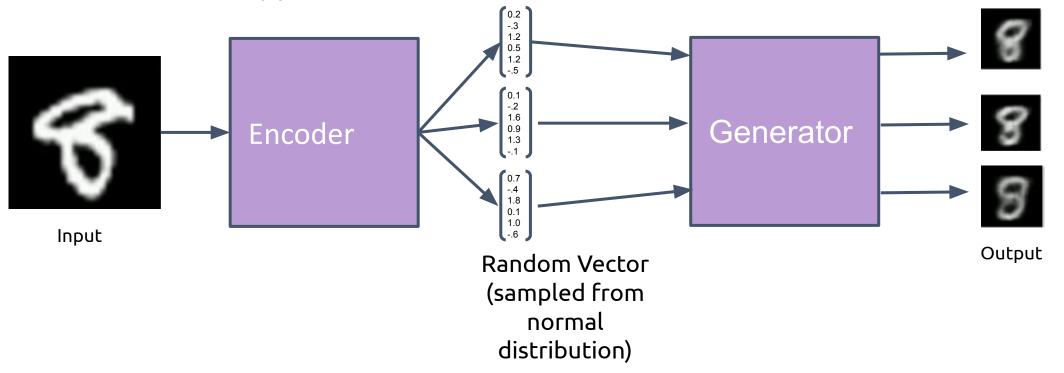


- In fact, the encoder can produce multiple different random vectors...
- ...which then lead to different outputs which are variants of the input



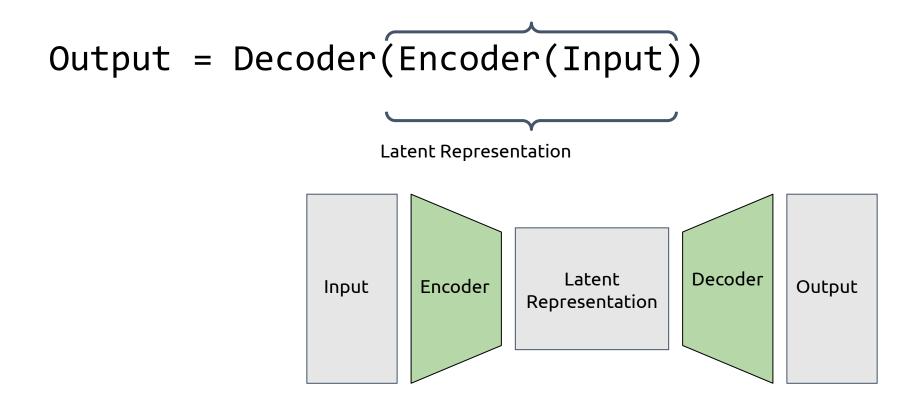
• Why do this?

- We'll see shortly how this setup allows for a nice, stable learning algorithm
- (It's actually just a small modification to how autoencoders are trained)



Building up the VAE Architecture

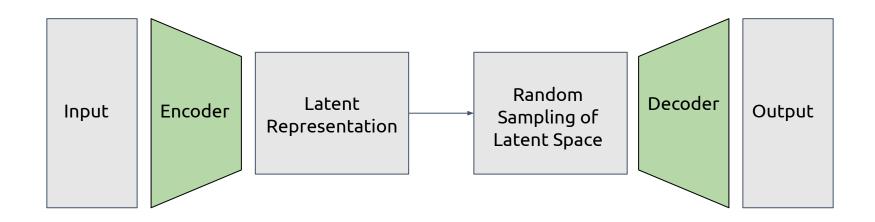
If we were to describe an autoencoder functionally:



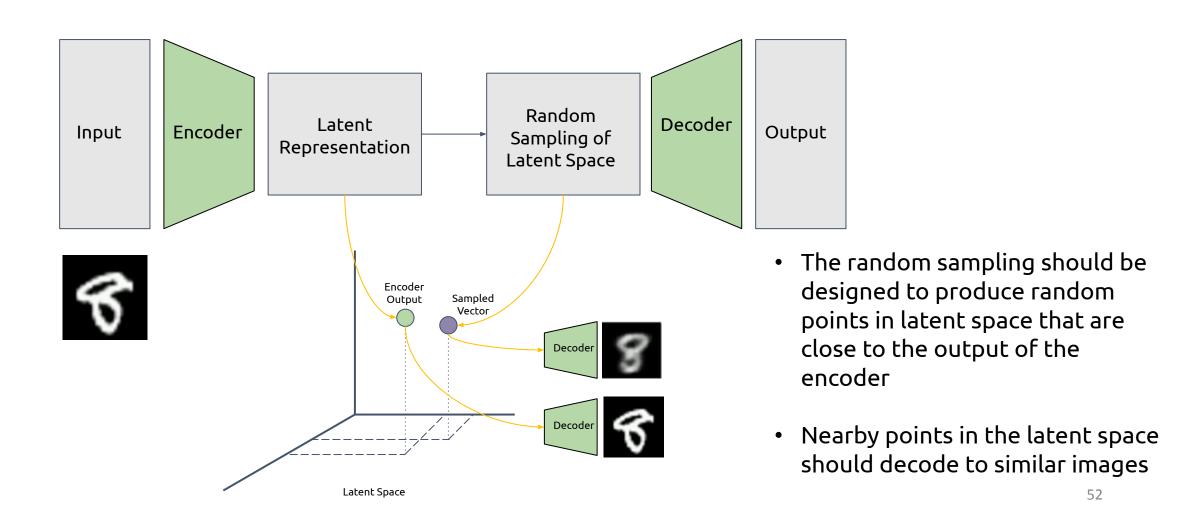
Building up the VAE Architecture

For variational autoencoders, we also do a random sampling operation at the bottleneck

Output = Decoder(random_sample(Encoder(Input)))



How does random sampling in latent space lead to variation?

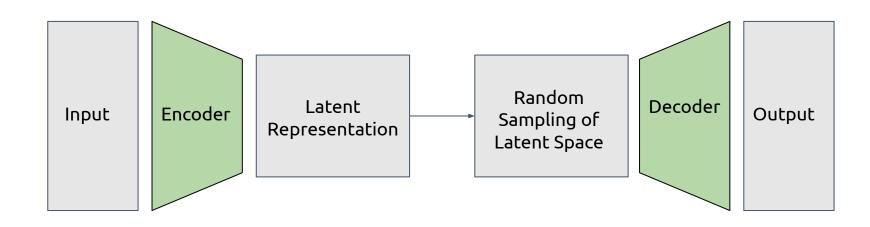


How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))

- We want the sample to be close to the encoder output
- One option: sample from a Gaussian centered at Encoder (Input)

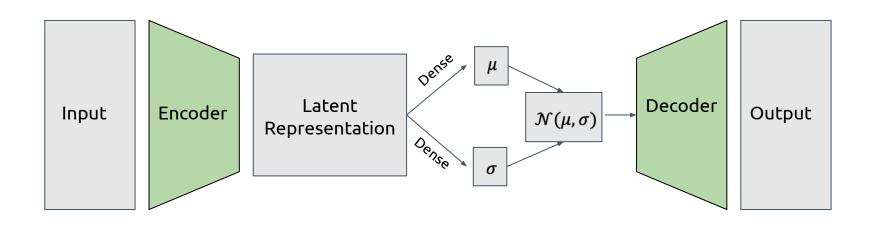
What can we modify?



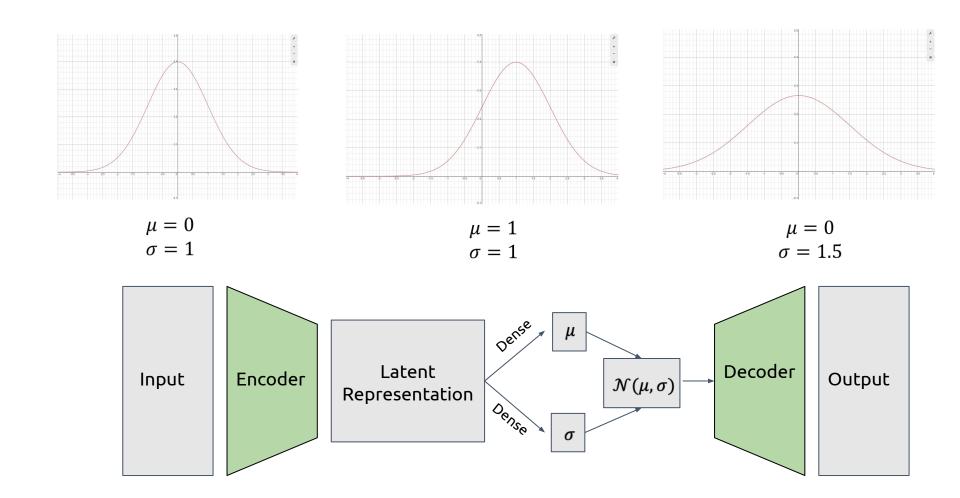
How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))

- We want the sample to be close to the encoder output
- One option: sample from a Gaussian centered at Encoder(Input)
- Use two dense layers to convert the encoder output into the mean and standard deviation of the Gaussian



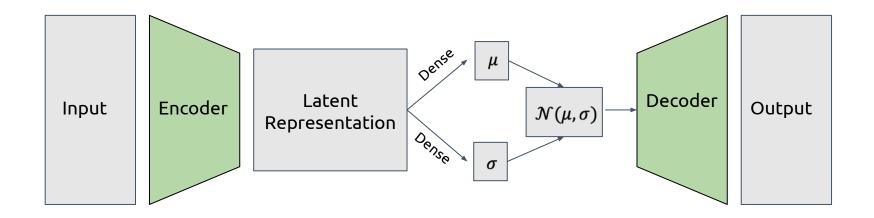
How should random_sample be defined?



Training a VAE

Two goals:

- 1. Reproduce an output similar to the input (Input ≈ Output)
- 2. Have some variation in our output (Input ¿Output)
 - Seems like two conflicting goals!
 - How do we resolve these two goals?



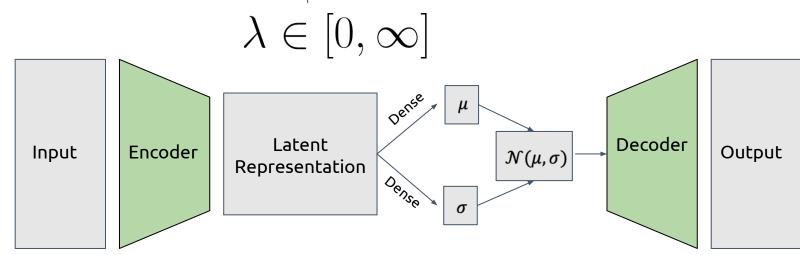
Weighted Combination of Losses

 L_1 = loss associated with producing output similar to input

 ${\cal L}_2$ = loss associated with producing output with some variation to input

$$L = L_1 + \lambda L_2$$

Total Loss:



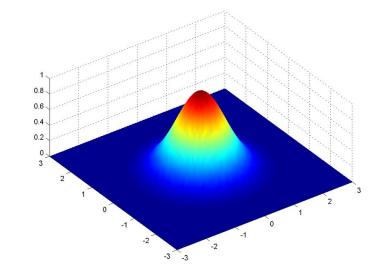
Recap

Convolutional AEs

Generative Modeling

Variational Autoencoders (VAEs) Generative modeling – formulation and applications

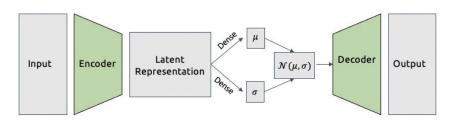
Probability distributions = generative models



Generative modeling for complex distributions

Modifying AEs

VAE architecture

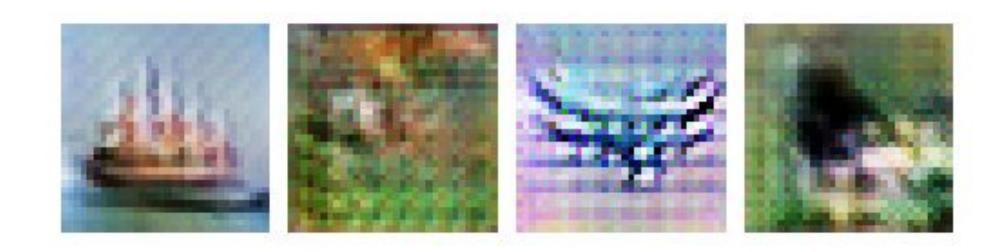


Extra material

More reading on Transpose Convolution

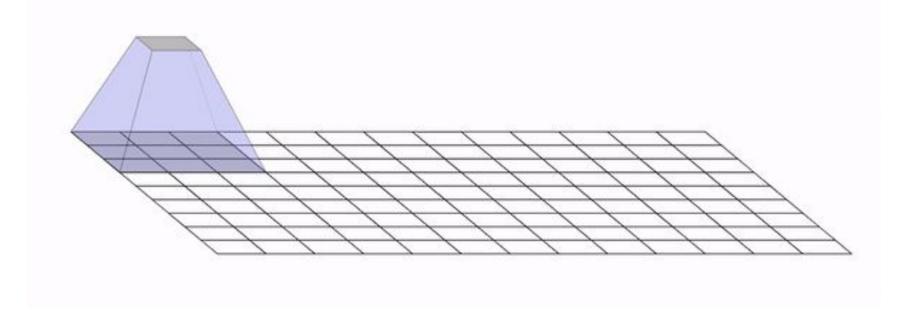
Caution: Checkerboard Artifacts

Transpose convolution causes artifacts in output images



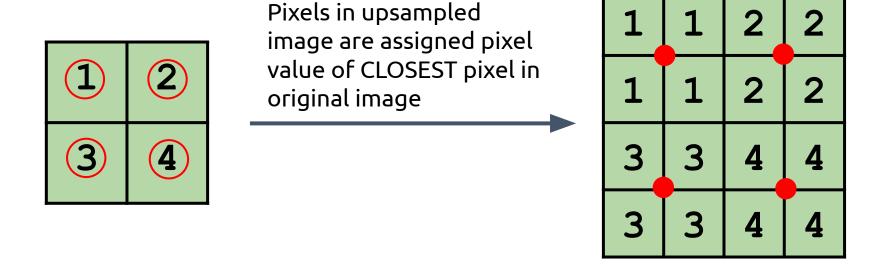
Caution: Checkerboard Artifacts

- Transpose convolution causes artifacts in output image
- Why? Some pixels get written to more often than others
- Is there a better way to upsample?



Eliminating checkerboard artifacts

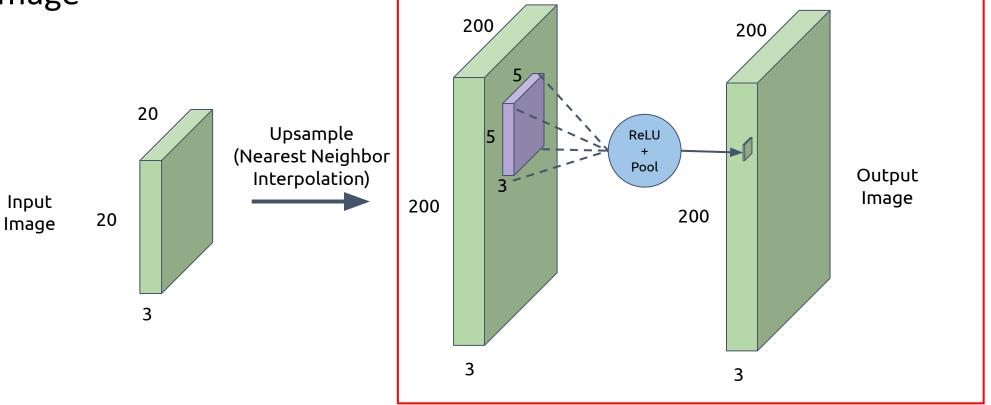
Step 1: Upsample using nearest neighbor interpolation:



Eliminating checkerboard artifacts

Step 2: Perform a convolution with SAME padding on the upsampled

image



Dealing With it in Tensorflow

```
# Layer to upsample the image by a factor of 5 in x and y using nearest
# neighbor interpolation

tf.keras.layers.UpSampling2D(size=(5, 5), interpolation='nearest')

# Do a convolutional layer on the result

tf.keras.layers.Conv2D(filters = 1, kernel_size = (10,10), padding = "SAME")
```

Checkerboard Artifacts Resolved

With Transpose Convolution

With Resize + Convolution