DIFFUSION MODELS, WHAT IS THAT ALL ABOUT
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Diffusion models are really good at learning conditional distributions.
p(z | y)



Use Case: Class-Conditioned Generation p(image | class_label)

source: Image Super-Resolution via lterative Refinement



https://iterative-refinement.github.io/

Use Case: Text-to-lmage Generation p(image | text_caption)

“a painting of a fox sitting in a field at sunrise in the style of Claude Monet”

Parti (but pretend it is ImageN) StableDiffusion Dall-E 2.0

source: ImageN, StableDiffusion, Dall-E 2.0



https://imagen.research.google/
https://stability.ai/blog/stable-diffusion-public-release
https://openai.com/dall-e-2/

Use Case: Super Resolution p(image | low_res)

256 X256

Class ID = 213

“Irish Setter”
o

h 4

h 4

Model 1 Model 2

source: Cascaded Diffusion Models



https://cascaded-diffusion.github.io/

Recap: Generative Modeling

Recall the goal of generative modeling - learning a model of a distribution from
which we can generate new samples.

Given x ~ p(x)we might want to learn pg(x) ~ p(x) (modeling)

Then, we can generate new samples ™ ~ pg(x) (generation)
p

Why is this useful?



- Approximating a Complex Distribution
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Generative Modeling: Themes

What are some common themes of generative modeling?

- We want to learn some complex distribution pg(x) ~ p(x)
- But we only have access to some simple distributions (such as Gaussians)




Generative Modeling: Themes

What are some common themes of generative modeling?

- We want to learn some complex distribution pg(x) ~ p(x)
- But we only have access to some simple distributions (such as Gaussians)

Idea: Let's learn a complex function (aka a neural network) to transform a simple
distribution sample into a complex one!

Gaussian Sample ==(neural net)==> Data Sample




Generative Modeling: Themes

Idea: Let's learn a complex function (aka a neural network) to transform a simple
distribution sample into a complex one!

- Gaussian Sample ==(neural net)==> Data Sample

The distribution of

. il ] /‘ y —
Generator 2=
? - - I

You have seen this before in:

Output of GAN trained

Random Vector on MNIST images
(sampled from unit

normal distribution)




Diffusion Models: a TLDR

An observation: adding steady amounts of Gaussian noise eventually corrupts
an image into something indistinguishable from a random Gaussian sample.




Diffusion Models: a TLDR

An observation: adding steady amounts of Gaussian noise eventually corrupts
an image into something indistinguishable from a random Gaussian sample.

One Step



Diffusion Models: a TLDR

An observation: adding steady amounts of Gaussian noise eventually corrupts
an image into something indistinguishable from a random Gaussian sample.

Anotr te



Diffusion Models: a TLDR

An observation: adding steady amounts of Gaussian noise eventually corrupts
an image into something indistinguishable from a random Gaussian sample.

Many Steps



Diffusion Models: a TLDR

An observation: adding steady amounts of Gaussian noise eventually corrupts
an image into something indistinguishable from a random Gaussian sample.

- Diffusion models simply learn to reverse this procedure over many timesteps




Recap: Variational Autoencoders 9@

Visually, we often see a VAE as:

qz[x) = z [~ px|2z)

p(Z)

How do we perform backpropagation through samples?



Recap: Reparameterization Trick

p:

For(x ~ N (z | p, 0?), €, where



Recap: Variational Autoencoders 9@

Visually, we often see a VAE as:

qz[x) = z [~ px|2z)

p(Z)

00~
(z]z)

Or as:
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Visually, we often see a VAE as:

qz[x) = z [~ px|2z)

p(Z)

T

q(z]z)

Or as:



Recap: Variational Autoencoders 9@

Visually, we often see a VAE as:

p(x|z)

p(Z)
p(x|z)

Or as: A N
A 4

...but what’s the intuition behind what is learned?
q(z|x)



Generative Modeling with Latent Variables

Given & ~ p(ax)we might want to learn pg(x) ~ p(x) (modeling)

PLATO'S MAN CA

What if we assume latent variables z exist?




Elon has an idea...




Elon has an idea...




Elon has an idea...




Elon has an idea...




Hierarchical VAEs

Generalize VAEs by enabling a hierarchy of latents 2z = z1,...z27

This is essentially learning a bunch of stacked VAEs

p(z|z)

RN

N_7T

q(z|z)



Hierarchical VAEs

Generalize VAEs by enabling a hierarchy of latents 2z = z1,...z27

This is essentially learning a bunch of stacked VAEs

p(z|21) p(21]22) p(zr—1l27)
©0e o
q(z1|x) q(22|21) q(zr|zr-1)

Disclaimer: Elon did not actually come up with this idea.



Hierarchical VAEs

Let’s think like a caveman...

p(x|21) p(21]22)

[\ K—\
d objects abs gtor
T 7

q(z1]z) q(22]21)




Hierarchical VAEs

Question:

- In a VAE we learn two networks: an encoder and a decoder.
- How many do we need to learn for a Hierarchical VAE?

...what if we assume all latent dimensions are the same?

p(x|21) p(21]22) p(zr—1l27)

ofofonge

q(z1]x) q(22]21) q(2r|2r-1)



Hierarchical VAEs

Question:

- In a VAE we learn two networks: an encoder and a decoder.
- How many do we need to learn for a Hierarchical VAE?

...what if we assume all latent dimensions are the same?

(x\zl) (21\22 p(ZT 1ler)
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Hierarchical VAEs

Question:

- In a VAE we learn two networks: an encoder and a decoder.
- How many do we need to learn for a Hierarchical VAE?

...what if we assume all dimensions are the same?

:L"\zl zl\ZQ (zT 1]27)

oloongc

q(21]z) q(22]21) q(zr|2r-1)



Hierarchical VAEs

Question:

- In a VAE we learn two networks: an encoder and a decoder.
- How many do we need to learn for a Hierarchical VAE?

...what if we assume all dimensions are the same?

p(zolz1) p(z1]z2) p(xr-1|rT) a2 .
Decoder NN T
[\ [\ [\ t ecoder t 1
X
N—7 \—/ \_/ t Encoder NN | L¢+1
(I(l'l\éb‘o) Q(wz\l‘l) (J(l’T!l‘T-l) t




Hierarchical VAEs

Question:

- In a VAE we learn two networks: an encoder and a decoder.
- How many do we need to learn for a Hierarchical VAE?

...what if we assume all dimensions are the same?

p(zolz1) p(w1]r2) p(xr_1|rT) Tt Hdec T
Decoder NN T
K N\ £ PN ; ecoder - > Lt —1
:Et ,Uenc
N_7 \/ \_/ Encoder NN |:::> Lt+1
FoE = i t Oenc
q(z1|zo) q(x2lz1) q(zr|rr-1)




Hierarchical VAEs

Question:

- In a VAE we learn two networks: an encoder and a decoder.
- How many do we need to learn for a Hierarchical VAE?

...what if we assume all dimensions are the same?

...what if we assume all encoder transitions are known
Gaussians centered around their previous input?

p(zolz1) p(w1]r2) p(xr-1|rT) Tt Hdec T
Decoder NN Tk
K N\ £ N ; ecoder - > Lt —1
:Et Henc
N T N7 Encoder NN |:::> Lt+1
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q(z1]z0) q(w2|z1) q(rr|rr-1)




Let's take a look at one encoding

(xo\an) (:c1\:62) p(fBT 1|zr)

@ ) @ @

Eﬁ q(x1|zo) I xz\:m (xT!a:T_1)
q(z1|z0) = N (21|20, 07T)

reparam. trick!




Let's take a look at one encoding

p(xolz1) p(w1|m2) p(xr-1|zT)

reparam. trick!




Let's take a look at one encoding

p(xolz1) p(w1|m2) p(xr-1|zT)




Let's take a look at one encoding

($0!$1) (1131\%2) p(xr—1|rT)

reparam. trick!




Let's take a look at one encoding

p(xolz1) p(w1|m2) p(xr-1|zT)

Aggregate into 1
sample!

reparam. trick!




Let's take a look at one encoding

p(xolz1) p(w1|m2) p(xr-1|zT)

Hﬁ q(x1|o) W q(x2|z1) q(zr|rr—1)
Aggregate into 1
where, sample!
ay = \/0% + 03
and, reparam. trick!

q(z2|70) = N (22|70, 03)



p(xolw1) p(zi—alee)  plaeweg) p(xr—1|zr)
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q(x1|z0) q(xe|wi1) q(Tig1|T0) q(xr|rr_1)




p($0|a:1) p(xt—1|$t) P($t|$t+1) p(xT—1|CL’T)
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p($0|a:1) p(xt—1|$t) P($t|$t+1) p(xT—1|CL’T)
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p($0|a:1) p(xt—1|$t) P($t|$t+1) P(xT—1|ZCT)

Q(Lt+1|£o) (lexT )




q(x¢|xo) is a Gaussian, for arbitrary ¢!

q(z¢]x0) = N (|20, a?1), where o, a1, ...ar are all known/fixed.

P($0|331) p(xt—1|37t) p($t|$t+1) p(xT—1|CL‘T)
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Hierarchical VAEs

Question:

- In a VAE we learn two networks: an encoder and a decoder.
- How many do we need to learn for a Hierarchical VAE?

...what if we assume all dimensions are the same?

...what if we assume all encoder transitions are known
Gaussians centered around their previous input?

p(wolz1)

xt

p(xi-1]xe) Pt Te41) p(er-1|er) Decoder NN
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Hdec
.
Odec

(@e—1lwo) 00 100 ..then we can aggregate and simplify the
¢(ze11lzo) a(@rleo) distribution of each intermediate “latent”!



Diffusion Models

It turns out, that this is exactly what a diffusion model is!

A Hierarchical VAE with these assumptions:

370|I1

p(xi-1]xe)

00 6

xt 1|CU0

q(w¢lxo)

$t|xt+1

q(2e41]x0)

...what if we assume all dimensions are the same?

...what if we assume all encoder transitions are known
Gaussians centered around their previous input?

CLT 1|CUT

q(zr|To)

5Ut

Decoder NN

Hdec

Odec

oo i



Diffusion Models

A diffusion model is implemented as a single neural network (the decoder)

g
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Optimization?

We want to learn a denoising decoder:

X d
t Decoder NN Hdec |:::> Tt—1
t Odec

QAZ't_l — HUdec + Odec * € reparam. trick!

e ~ N(0,1)

. p(xolz1) p(@i1|xy) p(2e|wis1) plxp_1|zr)

But what is the form of T¢—17? L ) L~

q(ze—1|x0) (@ |o)

...can we formulate this as supervised learning? q(e+1]To) q(@r|wo)



Optimization?

We want to learn a denoising decoder:

It
t

Decoder NN

Hdec

Odec

oo e

3A3t—1 = Udec T Odec * €

But what is the form of ¢—1?

reparam. trick!

e ~ N(0,1)



Optimization?

We want to learn a denoising decoder:

X d
t Decoder NN Hdec D:> Tt—1
t Odec

QAZ‘t_l — HUdec + Odec * € reparam. trick!
? e ~ N(0,1)
But what is the form of L+—17?
Recall that: q(zi_1|m0) = N (21|28, 0 1)
C.Xp_1 =T+ Q1 X € reparam. trick!

e ~ N(0,1)
Do we really need to predict O dec ? What is the ground truth signal for bdec ?



Optimization?

We want to learn a denoising decoder:

Lt
Decoder NN | [dec D:> Tit—_1
t
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e ~ N(0,1)
Do we really need to predict O dec ? What is the ground truth signal for bdec ?



Optimization?

We want to learn a denoising decoder:

Lt . :
Decoder NN | Tt—1
t

i't—l — j\jO + Qip_1 %X € reparam. trick!
? e ~ N(0,1)
But what is the form of L+—17?
Recall that: q(zi_1|m0) = N (21|28, 0 1)
C.Xp_1 =T+ Q1 X € reparam. trick!

e ~ N(0,1)
Do we really need to predict O dec ? What is the ground truth signal for bdec ?



Optimization?

We want to learn a denoising decoder:

Lt
t

Decoder NN xO

So in the end, a diffusion model is simply one Neural Network that predicts a clean
image I from arbitrary noisified image I +.




Diffusion Models: A Summary

A Diffusion Model is:

- One NN that predicts a clean image from a noisy version of the image
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Diffusion Models: A Summary

A Diffusion Model is:

- One NN that predicts a clean image from a noisy version of the image
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Diffusion Models: A Summary

How do we perform sampling?

Decoder NN 3;0
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Sampling

C%Q(ZE,H_l, t —I— 1)




Sampling

C%Q(ZEH_l, t —I— 1)
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Sampling
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Sampling
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Sampling

Q(iﬁt—1|$0)




Sampling

p(xol|z1) p(zi—1|wy) P(x¢|wi41) p(xr_1|x7)

®© 06 6




Pseudocode

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: xp ~ N(0,I)
2 xo ~ q(xo) 2: fort="1T,...,1:
3: ¢t~ Uniform(l,...,T) 33 e~N(OI)ift>1elsee=0
4: e ~N(0,I) 4: Ti_1 = To(Ty,t) + as_1€
5: Take gradient descent step on  «. ond for
6 V9||580 — if?e(-’ﬂo + ate,t)||2 6: return axg
7: until converged




Examples!

Celeb-A CIFAR-10

source: Generative Modeling by Estimating Gradients of the Data Distribution



https://yang-song.net/blog/2021/score/

Examples!

1024x1024 samples

source: Generative Modeling by Estimating Gradients of the Data Distribution



https://yang-song.net/blog/2021/score/

Three Different Interpretations

It turns out, training a VDM can be done using three different interpretations:

- Predicting original image |&| (we just did this)

- Predicting noise i) (coming up!)

- Predicting score function @ (coming up!)



VDM as a Noise Predictor )

Recall that our objective is to predict &g(x:,t) =~ xq



Image & and Noise )?

What does it mean intuitively?

For arbitrary x; ~ q(x: | o), we can rewrite it as x; = o + ar€g

Predicting ¢ determines €y and vice-versa, since they sum to the same thing!




Score Functions 7%

What are score functions?
Vg log p(x)

Intuitively, they describe how to move in data space to improve the (log) likelihood.
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Tweedie’s Formula

Mathematically, for a Gaussian variable z ~ N (z; i, 3, JTweedie's formula states:
Elp, | z]=2+3X.V;logp(z)
Then, since we have previously shown that:
2
q(xt|zo) = N(2t; T0, 07 T)
By Tweedie’s Formula, we derive:
2
Elpy, | Tt] = Tt + @i Vg, log p(xt)

The best estimate for the true mean is p,, = To

xo = Xt + o Ve, logp(x:)

zzzzzzz



Tweedie’s Formula

There exists a mathematical formula that states that:

To ~ x; + Vg, log p(a:)

Due to the fact that the distribution is Gaussian:

a(x|o) = Nz | 2o, 07 T)




VDM as a Score Predictor 7%

Recall that our objective is to predict &g(x:,t) =~ xq



Score 70 and Noise K)?

There is a relationship between the score and the noise, which we can derive by
equating Tweedie’s formula with the Reparameterization Trick.

Lo = Tt T+ afVlogp(mt) = Lt — O €

. aVlogp(®;) = —au€
1
Vlogp(cct) — —a—ﬁo
i

Intuitively, the direction to move in data space towards a natural image is the
negative noise term that was added.



Three Different Interpretations

It turns out, training a VDM can be implemented as a neural net that:

- |8 Predicts original image#g(x:,t) = g

- 1)) Predicts noise epsilonég(x;,t) ~ €

Q ? 9

- @cts score functionsg(x;,t) ~ th@




A Summary

We have learned that a diffusion model is simply one neural network that predicts
a clean image from a noisy image.

L - - 2 &
Objective: argmin ||xg — Zo(xy,t b1 pecodern |
0 t
Sampling:
plxolz) plxeale)  p@e|ze) p(ar-1|zr)
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