CSCI 1470/2470 Spring 2023

**Ritambhara Singh** 

January 30, 2023 Monday Deep Learning

DALL-E 2 prompt "a painting of deep underwater with a yellow submarine in the bottom right corner"

#### Recap

+

Represent input and output as numbers

Classification – predicting categorical outputs

Regression – predicting numerical outputs



Supervised Learning Learn a function that approximates the data well

Get more data!

How to

represent

inputs and

outputs

Try different models Pick a good model

## Real world data tends to be complicated!



(Image only for explaining concept, not drawn accurately)

(Numerical output)

# Today's goal - Learn about the first component of deep learning model

Perceptron:

(1) Machine Learning problem – Recognizing handwritten digits

(2) Perceptron

(3) Parameters – weights and biases

# Handwritten digit recognition

#### Motivation: ZIP codes

- In 1990s, great increase in documents on paper (mail, checks, books, etc.)
- Motivation for a ZIP code recognizer on real U.S. mail for the postal service!

80322-4129 80206

40004 (4310

J7878 05753

·5502 75316 35460: A4209

#### Our Problem:

Input: X Target: Y  $3^{*}$   $3^{*}$   $f(X) \rightarrow Y$  How does a computer know this is a three?



## Representing digits in the computer

•Numbers known as *pixel values* (a grid of discrete values that make up an image)

0 is white, 255 is black, and numbers in between are shades of gray

| 157 | 153 | 174 | 168 | 150 | 152 | 129 | 151 | 172 | 161 | 155 | 156 | 157 | 153 | 174 | 168 | 150 | 152 | 129 | 151 | 172 | 161 | 155 | 156 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 155 | 182 | 163 | 74  | 75  | 62  | 33  | 17  | 110 | 210 | 180 | 154 | 155 | 182 | 163 | 74  | 75  | 62  | 33  | 17  | 110 | 210 | 180 | 154 |
| 180 | 180 | 50  | 14  | 34  | 6   | 10  | 33  | 45  | 105 | 159 | 181 | 180 | 180 | 50  | 14  | 34  | 6   | 10  | 33  | 48  | 106 | 159 | 181 |
| 206 | 109 | 5   | 124 | 131 | 111 | 120 | 204 | 165 | 15  | 56  | 180 | 206 | 109 | 5   | 124 | 131 | 111 | 120 | 204 | 166 | 15  | 56  | 180 |
| 194 | 68  | 137 | 251 | 237 | 239 | 239 | 228 | 227 | 87  |     | 201 | 194 | 68  | 137 | 251 | 237 | 239 | 239 | 228 | 227 | 87  | n   | 201 |
| 172 | 105 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | .98 | -74 | 206 | 172 | 105 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | 98  | 74  | 206 |
| 188 | 88  | 179 | 209 | 185 | 215 | 211 | 158 | 139 | 75  | 20  | 169 | 188 | 88  | 179 | 209 | 185 | 215 | 211 | 158 | 139 | 75  | 20  | 169 |
| 189 | 97  | 165 | 84  | 10  | 168 | 134 | 11  | 31  | 62  | 22  | 148 | 189 | 97  | 165 | 84  | 10  | 168 | 134 | 11  | 31  | 62  | 22  | 148 |
| 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 105 | 36  | 190 | 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 106 | 36  | 190 |
| 205 | 174 | 155 | 252 | 236 | 231 | 149 | 178 | 228 | 43  | 95  | 234 | 205 | 174 | 155 | 252 | 236 | 231 | 149 | 178 | 228 | 43  | 96  | 234 |
| 190 | 216 | 116 | 149 | 236 | 187 | 85  | 150 | 79  | 38  | 218 | 241 | 190 | 216 | 116 | 149 | 236 | 187 | 86  | 150 | 79  | 38  | 218 | 241 |
| 190 | 224 | 147 | 108 | 227 | 210 | 127 | 102 | 36  | 101 | 255 | 224 | 190 | 224 | 147 | 108 | 227 | 210 | 127 | 102 | 36  | 101 | 256 | 224 |
| 190 | 214 | 173 | 66  | 103 | 143 | 95  | 50  | 2   | 109 | 249 | 215 | 190 | 214 | 173 | 66  | 103 | 143 | 96  | 50  | 2   | 109 | 249 | 215 |
| 187 | 196 | 235 | 75  | 1   | 81  | -17 | ۰   | 6   | 217 | 255 | 211 | 187 | 196 | 235 | 75  | 1   | 81  | 47  | 0   | 6   | 217 | 255 | 211 |
| 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 138 | 243 | 236 | 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 138 | 243 | 236 |
| 195 | 206 | 123 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | 95  | 218 | 195 | 206 | 123 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | 96  | 218 |

How is this different from the color image example in the last class?





• Pixel in position [15, 15] is light.

# what the computer sees



Often has lighter pixels in the middle!

How does the pattern compare with digit 3?

|         | 255    | 255                | 255    | 255     | 255     | 253      | 254      | 245   | 255   |
|---------|--------|--------------------|--------|---------|---------|----------|----------|-------|-------|
|         | 255    | 255                | 251    | 255     | 255     | 255      | 254      | 235   | 252   |
|         | 255    | 252                | 255    | 250     | 255     | 245      | 255      | 253   | 234   |
|         | 253    | 255                | 255    | 255     | 251     | 254      | 255      | 255   | 235   |
|         | 255    | 255                | 252    | 255     | 249     | 255      | 239      | 243   | 255   |
|         | 255    | 250                | 255    | 245     | 255     | 255      | 254      | 244   | 254   |
|         | 255    | 255                | 255    | 255     | 249     | 255      | 255      | 255   | 244   |
|         | 249    | 255                | 253    | 255     | 233     | 255      | 249      | 245   | 239   |
|         | 255    | 255                | 255    | 250     | 255     | 254      | 251      | 243   | 251   |
|         | 245    | 240                | 244    | 240     | 239     | 244      | 255      | 244   | 248   |
|         | 242    | 128                | 140    | 150     | 130     | 128      | 110      | 245   | 246   |
|         | 240    | 240                | 4      | 5       | 4       | 3        | 2        | 118   | 120   |
|         | 240    | 5                  | 4      | 2       | 0       | 0        | 0        | 4     | 2     |
|         | 0      | 0                  | 0      | 0       | 0       | 0        | 0        | 0     | 0     |
|         |        |                    |        |         |         | <b>2</b> | <b>.</b> | -     |       |
|         |        |                    |        |         |         |          |          |       |       |
|         |        |                    |        |         |         |          |          |       |       |
|         |        |                    |        |         |         |          |          |       |       |
|         |        |                    |        |         |         |          |          |       |       |
|         |        |                    |        |         |         |          |          |       |       |
|         |        |                    |        |         |         |          |          |       |       |
| Can w   | e det  | ine a              | a set  | of he   | uristic | s (i.e.  | rules k  | based | on ou |
|         |        |                    |        | 1       | 2       |          |          |       |       |
| Intuiti | on), t | <mark>O Cla</mark> | assity | / digit | S?      |          |          |       |       |

# Let's define some rules (heuristic) for classifying "7"



Digit is a 7 if  $P_1 >$ 128 and  $P_2 >$  128 and  $P_3 >$  128

## But what if...



#### Slanted digit?

#### An Improved Heuristic!



Digit is a 7 if  $P_1 >$ 128 and  $P_2 >$  128 and ( $P_3 >$  128 or  $P_4 >$  128)

#### Not so fast...



Digit shifted up?

### Heuristics...

- Not as simple as we think!
- Distortions, overlappings, underlinings, etc.
- Cannot rely on a set of exact rules

Let's do some machine learning!

Distorted numbers

**م** 3->9 *Q 9* 6->0 9->8 **9** 4->9 6->1 9->4 9->1 **L 3** 6->1 3->5 **> 9 0** 3->2 **9**->5 **6**->0 **4** 4->3 **9** 9->7 **2**->7 **% ) % % % 3** 3->8 **>** 8->5 6->5 3->8 9->8 **9 6 0 6 7** 9->8 6->3 0->2 6->5 9->5 **9** 0->7 **9** 9->7 2->8 S 4->9 2->8

# Machine Learning Pipeline for Digit Recognition





# Machine Learning Pipeline for Digit Recognition



# MNIST

- Modified National Institute of Standards and Technology database
- Handwritten digits
- •0 9 (10 *classes*)
- 70,000 images

G F Л qq Ø 

# Machine Learning Pipeline for Digit Recognition



# Machine Learning Pipeline for Digit Recognition



#### Train, validation, and test sets

- Train set used to adjust the parameters of the model
- Validation set used to test how well we're doing as we develop
  - Prevents overfitting
- Test set used to evaluate the model once the model is done



## MNIST

- Training set 60,000 images
- Test set 10,000 images
- No explicit validation set

What do you suggest we do here?

G F Л qØ P 

# Machine Learning Pipeline for Digit Recognition



# Machine Learning Pipeline for Digit Recognition





## Our simplified problem:



# Perceptron

(Our first deep learning model unit)

# **Biological motivation**

- Loosely inspired by neurons, basic working unit of the brain
- Serve to transmit information between cells



<u>here</u>

https://en.wikipedia.org/wiki/Depolarization

# The Perceptron





#### **Biological Neuron**

#### Artificial Neuron (Perceptron)

#### Input

• Input: a vector of numbers  $\mathbf{x} = [x_1, x_2, \dots x_n]$ 



What was x<sub>i</sub> for lemonade stand example?

#### What is x, MINIST image?

x is represented by a 28 \* 28 matrix of pixel values, flattened into a one-dimensional vector (size 784) (more on this later)

# Predicting with a Perceptron

- <sup>•</sup>1. Multiply each input  $x_i$  by its corresponding weight  $w_i$ , sum them up.
- 2. Add the bias b





# Predicting with a Perceptron

- <sup>•</sup>1. Multiply each input  $x_i$  by its corresponding weight  $w_i$ , sum them up.
- 2. Add the bias b

3. If the result value is greater than 0, return 1, otherwise return 0

$$f_{\Phi}(x) = \begin{cases} 1, & \text{if } b + \sum_{i=0}^{n} w_{i} x_{i} > 0\\ 0, & \text{otherwise} \end{cases}$$



How is perceptron different from linear regression?



Performs binary classification!

- w and b are parameters of the perceptron
  - Parameters: values we adjust during learning
  - Let  $\Phi = \{w \cup b\}$  (the set of all parameters)



# Go to www.menti.com and use the code 5592 2451

• Weights — the importance of each input to determining the output

b

Σ

output

- Weight near 0 imply this input has little influence on the output
- Negative weight means?

 $f_{\Phi}(x) = \begin{cases} 1, & \text{if } b + \sum_{i=0}^{n} w_i x_i > 0\\ 0, & \text{otherwise} \end{cases}$ 

Option 1: Increasing input will increase output

Option 2: Increasing input will decrease output

Option 3: Decreasing input will decrease output

#### • Weights — the importance of each input to determining the output

- Weight near 0 imply this input has little influence on the output
- Negative weight means increasing the input will decrease the output





• **Bias** — What do we need this for?



### **Bias: Geometric Explanation**

• the bias is essentially the **b** term in **y** = **mx+b** 



## **Bias: Conceptual Explanation**

#### • **Bias** — the *a priori* likelihood of the positive class

- Ensures that even if all inputs are 0, there will be some result value
- Just because all inputs are 0, it does not mean there are no 1's in the world
- Maybe there just happen to be more, say, 0's than 1's



# Bias as special type of weight

• Another way to think of bias is to represent it as an extra weight for an input/feature that is always 1



# Bias as special type of weight

 Another way to think of bias is to represent it as an extra weight for an input/feature that is always 1

$$[x_0, x_1, x_2, \dots x_n] \cdot [w_0, w_1, w_2, \dots w_n] + b$$

$$= [x_0, x_1, x_2, \dots x_n, 1] \cdot [w_0, w_1, w_2, \dots w_n, b]$$

#### Recall

$$\mathbf{a} = [a_1, a_2, \dots, a_n]$$
 and  $\mathbf{b} = [b_1, b_2, \dots, b_n]$  with vector space  $n$ 

the dot product is  

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

# Simplifying some notation...

- Recall: the dot product of two vectors of length *n* is  $\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$
- We can rewrite the perceptron function accordingly:

1

Any questions?  

$$f_{\Phi}(x) = \begin{cases} 1, & \text{if } b + \sum_{i=0}^{n} w_i x_i > 0 \\ 0, & \text{otherwise} \end{cases}$$

$$f_{\Phi}(x) = \begin{cases} 1, & \text{if } b + w \cdot x > 0 \\ 0, & \text{otherwise} \end{cases}$$

• In modern deen learning narlance  $h \perp w \cdot v$  is known as a *linear unit* 

# A Binary Perceptron for MNIST

- Inputs  $[x_1, x_2, ..., x_n]$  are all positive
  - n = 784 (28 \* 28 pixel values)
- *output* is either 0 or 1
  - 0 → input is not the digit type we're looking for
  - 1 → input *is* the digit type we're looking for



# Training a perceptron



0. set the parameters  $\Phi = \{w \cup b\}$  to 0

1. Iterate over training set several times,

feeding in each training example into the model,

producing an output, and adjusting the parameters according to whether that output was right or wrong

2. Stop once we either
(a) get every training
example right or
(b) after N iterations, a
number set by the
programmer.



# The Perceptron Learning Algorithm

- •1. set *w*'s to 0.
- 2. for N iterations, or until the weights do not change:
  - a) for each training example  $\mathbf{x}^k$  with label  $y^k$

i. if 
$$y^k - f(\mathbf{x}^k) = 0$$
 continue

ii. else for all weights 
$$w_i$$
,  $\Delta w_i = (y^k - f(\mathbf{x}^k)) x_i^k$ 

- b = bias
- w = weights
- N =maximum number of training iterations
- $\mathbf{x}^k = \mathbf{k}^{\text{th}}$  training example

- $y^k = label$  for the k<sup>th</sup>example
- $w_i$  = weight for the i<sup>th</sup> input where  $i \le n$
- *n* = number of pixels per image
- $x_i^k = i^{th}$  input of the example where  $i \le n$