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Diffusion Models: a TLDR

An observation: adding steady amounts of Gaussian noise eventually corrupts
an image into something indistinguishable from a standard Gaussian sample.

- Diffusion models simply learn to reverse this procedure over many timesteps




Diffusion Models: a TLDR
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Diffusion Models: A Quick Review

A Diffusion Model is:

- One NN that predicts a clean image from a noisy version of the image
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Diffusion Models: A Quick Review

A Diffusion Model is:

- One NN that predicts a clean image from a noisy version of the image
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Sampling
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Diffusion Models: A Quick Review

A Diffusion Model is:

- One NN that predicts a clean image from a noisy version of the image
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Diffusion Models: A Quick Review

We have learned that a diffusion model is simply one neural network that predicts
a clean image from a noisy image.

L - . 2 &
Objective: argmin ||xg — Zo(xy,t b1 pecodern |
0 t
Sampling:
plwolz1) x|z p(@e]we) p(xr-1lrr)

®© 06 6




Diffusion Models as a Noise Predictor K2

Recall that our objective is to predict &g(x:,t) =~ xq



Image & and Noise )?

What does it mean intuitively?

For arbitrary x; ~ q(x: | o), we can rewrite it as x; = o + ar€g

Predicting ¢ determines €y and vice-versa, since they sum to the same thing!




Diffusion Models as a Score Predictor 790

Recall that our objective is to predict &g(x:,t) =~ xq



Three Different Interpretations

Last class we learned that a DiffModel can be implemented as a neural net that:

- |8 Predicts original image#g(x:,t) = g

- ) Predicts noise epsilonég(x:, t) ~ €
) C.) 9 x = xo+ €

- @cts score functionsg(x;,t) ~ th@

T~ x; + a2V, logp(x;)
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Three Different Interpretations

Last class we learned that a DiffModel can be implemented as a neural net that:

- |8 Predicts original image#g(x:,t) = g

- 1)) Predicts noise epsilonég(x;,t) ~ €
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- @cts score functionsg(x;,t) ~ th@
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Recap: Generative Modeling
Data distribution ~ E*3
(unknown) -

pe(X)

Model distribution High Probability!

Deep Neural Network

source: Learning to Generate Data by Estimating Gradients of the Data Distribution



https://www.youtube.com/watch?v=nv-WTeKRLl0

Probability-based Generative Modeling

Why is modeling the probability hard in GenMo?




Probability-based Discriminative Modeling

What about modeling the probability for classifiers?

Probabilities, and therefore model outputs, have to be:

- Non-negative: 0 < py(x)

- Less than orequal to 1: pg(x) <1

- Sum to 1 for the entire space: /pe(w)dw =1

xr

How did we do this for discriminative modeling?



Probability-based Generative Modeling

Why is modeling the probability hard in GenMo?

Probabilities, and therefore model outputs, have to be:

- Non-negative: 0 < py(x)
- Less than orequal to 1: pg(x) <1

- Sum to 1 for the entire space: /pg(a})dw =1

xr

In GenMo we do not model the probability over all labels for an image...

We model the probability of all possible images - there’s no way we can pass
everything through our model and softmax over the result!



Probability-based Generative Modeling

Why is modeling the probability hard in GenMo?

Probabilities, and therefore model outputs, have to be:

- Non-negative: 0 < py(x)
- Less than orequal to 1: pg(x) <1

- Sum to 1 for the entire space: /pg(a}) dr =1

xr

This puts a lot of architectural burden on our network, to output valid probabilities!



A simple observation...

All probability distributions can be written as:

pe(x) = ieefe(w)

A

This is a concept from thermodynamics, where the fg(x) is a flexible,
unconstrained value called the energy.

ZO Is @ normalization constant, computed as: Zg = / e~ fo(®) dp
£Ir



Energy-based Generative Modeling
Idea: Let’s just model the energy function fg() using a flexible neural network!
fo(a)is called an energy-based model (EBM) or unnormalized probabilistic model.

How do we train our energy function?

- We can try interpreting it as a probability: pg(x) = ——e~

N
- Then we can maximize log likelihood as before: mQaXZlogpg(Xi)
1=1

What is the problem with this? Z = / e To@) qp

x
Intractable for complex parameterizations!



Another simple observation...

How do we avoid calculating the normalization constant?
Remember that Zg is a constant that only depends on parameters @

Then, if we take the input gradient of the log of the probability:

1 —folx
po(x) = (Z_ge fo( ))



Score Functions 70

What are score functions?
Vg logp(x)

Intuitively, it describes how to move in data space to improve the (log) likelihood.




Score Functions 7%

What are score functions?
Vg log p(x)

Intuitively, it describes how to move in data space to improve the (log) likelihood.
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Score-based Generative Modeling 7%

Idea: Let’s just model the score function sg () using a flexible neural network!
The score is still an unconstrained value, which is attractive to model directly.

How do we train our score function?
- Minimize the Fisher Divergence between the ground truth and predicted score

Ey@) ||V logp(2) — so(a)]l3]

- Intuitively this is simply minimizing the L2-distance between our score model
and the ground truth score
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Score-based Generative Modeling 7%




Score-based Generative Modeling 7%

To drive the point home, score-based generative modeling is a way to implicitly
model the energy function fg(x)

We can visualize the learned energy along with the score estimate below:
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Score-based Generative Modeling 790

Once we have trained a score-based model sg(x) =~ V3 logpe(x), we can use an
iterative procedure called Langevin dynamics to draw samples from it:
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source: Generative Modeling by Estimating Gradients of the Data Distribution



https://yang-song.net/blog/2021/score/

Score-based Generative Modeling 7%

Once we have trained a score-based model sg(x) =~ V3 logpe(x), we can use an
iterative procedure called Langevin dynamics to draw samples from it:
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Score-based Generative Modeling 7%

langevin score langevin energy
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Score-based Generative Modeling 790

What is the problem with this optimization objective?
2
Epe) |[F1og2(@) - so(@)]




Score Matching

Fortunately, there are a class of methods called score matching that minimize the
Fisher Divergence without needing to know the ground-truth score!
Ground Truth Score Matching: E, ) {||V log p(x) — 39(:13)||§}
: . 1
Hyvarinen Score Matching: E, [tl’(VmSO(iB)) + 5”39(;1;)\\%]

. . 1
Sliced Score Matching: E, E, ) [VTvaQ(w)V =5 |se(x) H%]

Denoising Score Matching: Eqa (%|x)p(x) [HV;( log 4o (5&|X) — 8¢ (5&) Hg]



Hyvarinen Score Matching

Hyvarinen (2005) utilized integration by parts to remove the unknown V log p(x)
2
Ep(a) |1V log p(@) - s()]|3]

L(9) = %/P(w) [Se(w)Tse(w) = QSe(w)TVIOgP(iB) T Vlng(w)TVIng(:L‘)} dx
1 T T log-deriv trick:
=2 /p(w) s0(x) ' sp(x) — 250(x) ' Viogp(x)] da p(x)V log p(xr) = Vp(z)

/p(w)se(w)TVIng(w)dw = /39($)TVp(w)dw
- [p(a:)se(w)]iooo — /p(w)vgcse(w)dm

By |(1(Vaso(e) + 3 lso(a)



Hyvarinen Score Matching Ep(a) |t1(Vase(x)) + 5 so(@)l2

We have gotten rid of unknown V log p(x) &

But now we have to compute tr(Vgsg(x))

When our data has high dimensionality, this is not cheap - many nested backprops!
8;9—1?}5| 889 1 (X) 889 1 (X)
I Ox3
< N 2]('x'}' l?ase 2(x)' 86 2(x)
x56(X) = 91 9>
889 3(X) 65‘9 3(5(7 l?989 3?)3'
O0x1 O0xo | Ox3 |

figure link


https://canvas.cornell.edu/files/5511639/download?download_frd=1

Sliced Score Matching

Song (2019) utilized random projections to estimate the expensive tr(V g sg(x))
. 1 2
Hyvarinen: Ep ) [tr(Vgse(x)) + 5“39(:13)\\2
. . 1
Sliced Score Matching: E,, E, ) [VvaSQ(m)V +3 Hse(w)H%}

Intuition - when we project to a lower dimension, the problem becomes tractable.

- Dv is a simple distribution of random vectors, e.g. the multivariate std. normal.



Sliced Score Matching

Song (2019) utilized random projections to estimate the expensive tr(V g sg(x))

2
vxlogpdata(x) / —»/ ----‘é.?f_ Z‘;‘ y
g
. —.z -
Sg(X) Sl s . &
v ==/ gy
Z 7



Denoising Autoencoders

Denoising Autoencoders work as follows:

Encoder Decoder

Original Noisy Code Output
Image Input

The rationale is that this minimizes “memorization” - the input is corrupted from the
start!



Denoising Score Matching

Vincent (2010) proved that matching the score for a noisy perturbation of the input
can also minimize the score for the ground truth estimator.

The intuition is that following the gradient of some simple Gaussian perturbation of
an input should move us towards the original clean input.

Eq, z1xpx) |V 108 4o (X]x) — s9(%) 2]

With a simple gaussian for ¢ (Z|€) = N(Z; ¢, 0°)

~

1
We know that indeed: V3 log ¢, (Z|%) = = (& — @)
o



Denoising Score Matching

E,., &xpcolll Vi log g0 (X]x) — sp(X) ]3]

A simple algorithm:

- Take in your input sample

- Perturb it with some Gaussian noise

- Compute the score estimate for the noisy sample

- Compare it with the ground truth score computed by the noising Gaussian

1

Vizlogq,(xlx) = g(ii: — x)



Hyvarinen score Matcning, iter >

Ground Irutn Score Matcning, iter >
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Score-based Generative Modeling

.

Data samples
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https://yang-song.net/blog/2021/score/

Score-based Generative Modeling 790
What is the problem with vanilla score-matching?
Ey(o)l[I Ve log (@) — s0(@)|3] = [ p(@) |V logp(a) - saa) fda

Our model of the score will not learn the low-density regions well

Data density Data scores Estimated scores

i I
[PAPAVISSE [PAPART IR
source: Generative Modeling by Estimating Gradients of the Data Distribution
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Score-based Generative Modeling 7%

What is the solution for vanilla score-matching?

- Adding Gaussian noise!

Perturbed density Perturbed scores Estimated scores
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Score-based Generative Modeling 7%

How do we choose an appropriate noise scale for the perturbation process?




Score-based Generative Modeling 7%
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Score-based Generative Modeling 790

Now, we estimate the score function of each noise-perturbed distribution

39(5137 t) e th logpﬁt (a;t)
forallt=1,2,.---,T

We model it as a neural network, called the Noise Conditional Score Network

The training objective is a weighted sum of Fisher divergences for all noise scales:

T
arg;nin Z )\(t)Epat (x4) [IIVIOgPUt(th) . se(w,t)Hg}
t=1

source: Generative Modeling by Estimating Gradients of the Data Distribution
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Score-based Generative Modeling 7%

Sampling is done using annealed Langevin Dynamics

’ » I e 0 5 ol P T T i

Running Langevin dynamics for each noise level in sequence, initializing the
next noise level with the results of the previous one.
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source: Generatlve Modehng by Estimating Gradients of the ata Distribution


https://yang-song.net/blog/2021/score/

Examples!

Celeb-A CIFAR-10

source: Generative Modeling by Estimating Gradients of the Data Distribution



https://yang-song.net/blog/2021/score/

Review: Variational Diffusion Models

We want to learn a denoising decoder:

Lt .
Decoder NN | |:::> Tt—1
t
j}t—l — j\jO + Qip_1 %X € reparam. trick!
* e ~ N(0,1)
But what is the form of T¢—17
Recall that: q(zi_1|m0) = N (21|28, 0 1)
C.Xp_1 =T+ Q1 X € reparam. trick!
e ~ N(0,1)

Do we really need to predict O dec ? What is the ground truth signal for bdec ?



Review: Variational Diffusion Models

We want to learn a denoising decoder:

Lt .
Decoder NN | Tt—1
t
reparam. trick!

where ground truth denoising sample is: Ty—1 =(Lo)+ Qt—1 ¥ € ¢~ A(0,T)

T

arg min Z |xo — ie(wt,t)\lg
6 t—1

Loss Obijective:



Review: Variational Diffusion Models

We want to learn a denoising decoder:

Tt ~
Decoder NN | € D:> Tt—1
t

reparam. trick!
where ground truth denoising sample is: Ty—1 =(ToJ+ Qt—1 * € ¢~ A(0,T)

which is equivalent to: @, 1 =[xy — ox {€gH az—1 * € (noise prediction)

N T

Loss Obijective: , :

arg;nm g €0 —Ee(wtat)Hg
t=1



Review: Score 0 and Noise K)?

There is a relationship between the score and the noise, which we can derive by
equating Tweedie’s formula with the Reparameterization Trick.

Lo = Tt T+ afVlogp(mt) = Lt — O €

. aVlogp(®;) = —au€

1
\% 10gp(wt) — a—tﬁo

Intuitively, the direction to move in data space towards a natural image is the
negative noise term that was added.



Review: Variational Diffusion Models

We want to learn a denoising decoder: P
Ty~ @y + of Vg, log p(ay)
Lt
; Decoder NN | \/ . logp(a:t) D:> Tt—1

reparam. trick!
where ground truth denoising sample is: Ty—1 =(ToJ+ Qt—1 * € ¢~ A(0,T)

which is equivalentto: ;1 = Ty — oy * €g + vy_1 * €

—_
which is equivalentto: ;_1 =|¢ + Oz% * th logp(:L't)J + Qip_1 * €
(score prediction)

Loss Obijective: N
argmin > ||V, log p(@y) — 8o (1, )l
t=1



Unifying Two Interpretations - Training Objective

The Hierarchical VAE interpretation of diffusion models shows that we can use a
network to model the score function at arbitrary noise corruptions, learned by:

T
arg min > " IVa, logp(z:) — 30(z:, 1)
t=1

Score-based generative modeling also uses a network to model the score function
at arbitrary levels of Gaussian noise corruption, learned by:

T
argemin Z )\(t)Epat (x4) [HVlngat(th) . se(w,t)Hg}
t=1



Review: Variational Diffusion Models

We want to learn a denoising decoder: P
Ty~ @y + of Vg, log p(ay)
Lt
; Decoder NN | \/ . logp(a:t) D:> Tt—1

reparam. trick!
where ground truth denoising sample is: Ty—1 =(ToJ+ Qt—1 * € ¢~ A(0,T)

which is equivalentto: ;1 = Ty — oy * €g + vy_1 * €

—
which is equivalent to: |;_1 = |+ + Oz% * th logp(:L't)J + Qip_1 * €
(score prediction)

Loss Obijective: N
argmin > ||V, log p(@y) — 8o (1, )l
t=1



aaaaaaaaaaaa

...........

Unifying Two Interpretations - Sampling Procedure ﬁ

Let’s take a closer look at Langevin Dynamics:

Tir1 | x; H Vglogp(x)+ v2de;,| i=0,1,--- K,

Recall our denoising transition from the Hierarchical VAE formulation:

reparam. trick!

e ~ N(0,1)

T 1 =|ae + af * Vg, logp(x:)|+ ap—1 4 €

Annealed Langevin Dynamics sampling is analogous to Markov Chain procedure.



Sampling p(aola) prale)  pladr) p(orifer)
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Unifying Two Interpretations

We have shown two equivalently valid ways to describe a diffusion model!
- One takes the perspective of a Markovian Hierarchical VAE, where samples

are steadily denoised through “hierarchies”

- Another takes the perspective of energy-based models and score matching
where we iteratively refine an input through noise levels. R

they are two sides of the same coin!




Conditional Diffusion Models

So far we have been learning an unconditional diffusion model pg(x)



Conditional Diffusion Models p(image | text_caption)

How do we incorporate conditional information, to control data generation?

“a painting of a fox sitting in a field at sunrise in the style of Claude Monet”

Parti (but pretend it is ImageN) StableDiffusion Dall-E 2.0

source: ImageN, StableDiffusion, Dall-E 2.0



https://imagen.research.google/
https://stability.ai/blog/stable-diffusion-public-release
https://openai.com/dall-e-2/

Conditional Diffusion Models

How do we incorporate conditional information, to control data generation?

Suppose we have conditioning information y and now want to learn pg (@ | y)

Well an unconditional diffusion model pg(x) really is just:

Decoder NN CCO




Three Different Interpretations

It turns out, training a DiffModel can be implemented as a neural net that:

- |8l Predicts original imageZe(x:,t) ~ xo To(xe,t,y) = xo

- i) Predicts noise epsilonég(x:,t) ~ € €g(x,1,y) = €

- 10 Predicts score functionse(x:,t) ~ Vg, log p(x;)

Lt
t
Yy

Lt
t Decoder NN X0

Y

Lt
t Decoder NN € 0
Yy

Se(mtatay) ~ Vlogp(wt ‘ y)

Decoder NN

V:Bt logp(wt ‘ y)



Guidance
Guidance provides more explicit control on the amount of weight the model gives
to the conditioning information, at the cost of sample diversity.

- How much should our generated x match y?

Let us take the score-based perspective of difftusion models.

Now, we are interested in learning Vlogp(x; | y) rather than unconditional score
function Vlog p(x;)



Classifier Guidance

Score of a conditional diffusion model:
Vlogp(x; | y) = Vlog (

P(B|A)P(4)

P(B)

p(et)p(y | xt) )
P(A|B) =

p(y)



Classifier Guidance

Score of a conditional diffusion model:
p(x:)p(y | ) )

Vlogp(z: | y) = Vlog (
p(y)
= Vlogp(z:) + Viegp(y | ;) — Vlogp(y)

P(B|A)P(4)

P(A|B) = P(B)



Classifier Guidance

P(B|A)P(4)

P(B)

Score of a conditional diffusion model:
p(x:)p(y | ) )
P(A|B) =

Vlogp(z: | y) = Vg ( (1)

= Vlogp(z:) + Viegp(y | ;) — Vlogp(y)
= Vlogp(x;) + Vliegp(y | x)
N—— ~

-’

~
unconditional score  adversarial gradient



Classifier Guidance

P(B|A)P(A)

P(B)

Score of a conditional diffusion model:
p(et)p(y | xt) )
P(A|B) =

Viegp(x: | y) = Vlog ( 2(0)

= Vlogp(z:) + Vlogp(y | ) — Vlogp(y)
= Vlogp(z:) + Vlegp(y | x:)
N 7 A ~~ 7
unconditional score  adversarial gradient
It turns out that training a conditional diffusion model is as simple as training an
unconditional diffusion model (as before) along with a classifier p(y | x;)!

Decoder NN th log p(wt)

Flattening
—




Classifier Guidance

Score of a conditional diffusion model:
p(et)p(y | xt) )

Viegp(x: | y) = Vg ( 2(0)

= Vlogp(z:) + Vlogp(y | ) — Vlogp(y)
= Vlogp(z:) + Vlegp(y | x:)
N 7 A ~~ 7
unconditional score  adversarial gradient
It turns out that training a conditional diffusion model is as simple as training an
unconditional diffusion model (as before) along with a classifier p(y | x;)!

P(B|A)P(A)

P(A|B) = P(B)

; A4
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Classifier Guidance

Score of a conditional diffusion model: -
()p(y | ) ) P(B|A)P(A)

p
Vlogp(wtly)=V1°g< p(v) P(4|B) = P(B)

= Vlogp(z:) + Viegp(y | ;) — Vlogp(y)
= Vlogp(x;) + Viogp(y | xt)
; N S

v
unconditional score  adversarial gradient

It turns out that training a conditional diffusion model is as simple as training an
unconditional diffusion model (as before) along with a classifier p(y | x;)!

Sampling is then done by querying the learned unconditional score function as well as
the adversarial gradient of a classifier.

V:Bt logp(wt) + (




Classifier Guidance

P(B|A)P(A)
P(B)

Score of a conditional diffusion model:
p(xe)p(y | 1) )

Vlogp(z: | y) = Vg ( 2(0)

= Vlogp(z:) + Vlogp(y | ) — Vlogp(y)
= Vlogp(z:) + Vlegp(y | x:)
N 7 A ~~ 7
unconditional score  adversarial gradient
It turns out that training a conditional diffusion model is as simple as training an
unconditional diffusion model (as before) along with a classifier p(y | x;)!

P(A|B) =

Sampling is then done by querying the learned unconditional score function as well as
the adversarial gradient of a classifier.

- The classifier attempts to tell us how good the noisy image matches the conditional
label. It must be trained for arbitrary noise levels, however!

Viegp(x: |y) = Viegp(xt) +vVlogp(y | x+)



Classifier Guidance

Sampling is then done by querying the learned unconditional score function as

well as the adversarial gradient of a classifier.

)

Vlogp(x:)+ 1V logp(y | =

Viogp(z: | y)

IR P g
BT RS FH
S AT

P

P g AT A

POSNONNONON N N N Y

B

SN N N N N NN

p(x |y



Classifier Guidance

Sampling is then done by querying the learned unconditional score function as

well as the adversarial gradient of a classifier.

)

(3/|33t

-I-”ylr\7 log p

\% logp(wt)

Viogp(z: | y)

IR P g
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S AT

P
P g AT A
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p(x |y
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Classifier Guidance

well as the adversarial gradient of a classifier.

Why not justuse [V log p(x¢ | y)

TASK 3: Input Opti

Vlogp(y | )

Ideal for 0 ideal for 1 ideal for 2 ideal for 3 Ideal for 4
0 04 0 04 0
So far, we've been training mo i flo 4
powerful this can be and what 2 28 -
strategy if we really needed to 6 m 2 0 m = 0 1 20 0 mw = 0o m 20
A pretty common issue with d . Ideal for 5 . Ideal for 6 . Ideal for 7 Ideal for 8 Ideal for 9
decisions by just looking at it
1n 8
We're going to finish off the la 20 b |
MNIST model that ClaSSify as & & TR Fa o & P LT s T T
L \""/ L\~

e starting to realize just how
hing using a similar

odel is doing to make its

pptimized inputs for our




Classifier-Free Guidance

Let’s revisit the score of a conditional diffusion model:
Viogp(z: | y) = Vlegp(y | 1) + Vlog p(z:)



Classifier-Free Guidance

Vlogp(x: | y) = yVlogp(a: | y) + (1 — )V logp(x:)

Ve Ve

conditional score unconditional score

Questions:

-  What happens if 7Y is 17?
-  What happens if 7Y is larger than 17

- How many diffusion models do we need to train? Ty

t | pecodernn (Vo logp(x, | y)
so(xi,t,y) = Viogp(x: |y) v

se(Tt,t) ~ Vlogp(x:) secsert |V, log p(a;)




Classifier-Free Guidance

Vlogp(x: | y) = yVlogp(a: | y) + (1 — )V logp(x:)

Ve Ve

conditional score unconditional score

Questions:

-  What happens if 7Y is 17?
-  What happens if 7Y is larger than 17
- How many diffusion models do we need to train?

so(xt,t,y) ~ Viogp(xy |y) o
t | pecodernn (Vo logp(x, | y)

so(xt,t,0) = Vlogp(x:) o




Classifier-Free Guidance

1L R0 & : |

source: [E[{& 4 FiAIlStable Diffusion | TEALHWTO TR - XX D15 7T</:1?"é575‘éo@dﬁéCFG(c/assmer free auidance)J&/I—{Ilﬂﬁd)ﬁ‘ ?



https://gigazine.net/news/20220928-stable-diffusion-classifier-free-guidance/

Classifier-Free Guidance

source: ImageN


https://imagen.research.google/

Models in Practice

Let’s explore some of the state-of-the-art diffusion models in practice:

- DALL-E2 @3 OpenAl

o e .
- ImageN %e@3 Google Brain

- StableDiffusion @Zn\"["A@




DALL-E 2

CLIP objecti L [
[ = — - ! ler:scloder
“a corqi
playing a E
flame o ——
throwing para W
trumpet” 00000 _8 8
! 8+8+
----------------------------------- — | —8.8.8 . _|eXe
O O
prior decoder

source: Hierarchical Text-Conditional Image Generation with CLIP Latents



https://cdn.openai.com/papers/dall-e-2.pdf

ImageN

Text

}

Frozen Text Encoder

Text Embedding

Y

Text-to-Image
Diffusion Model

64 x 64 Image

Y

Super-Resolution
Diffusion Model

256 x 256 Image

Y

Super-Resolution
Diffusion Model

|

1024 x 1024 Image

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”



https://arxiv.org/abs/2205.11487

StableDiffusion

Remember this?

- In a VAE we learn two networks: an encoder and a decoder.
- How many do we need to learn for a Hierarchical VAE?

...what if we assume all latent dimensions are the same?

2(zl70) ‘;@Q w Z; Decoder NN | 2+ 1 T
€0o o "
N, / N_7T T tt EncoderNN | <¢+1
q(22]21) q(zr|2r-1)




StableDiffusion

It turns out that this is exactly what Stable/Latent Diffusion is doing!

- We model the latent distribution using a diffusion model

source: High-Resolution Image Synthesis with Latent Diffusion Models

p(x|21) ] p(21]22) p(zT 1 |ZT

Z2|21
Zt|Z1
q(zr|21)



https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.pdf

StableDiffusion

It turns out that this is exactly what Stable/Latent Diffusion is doing!

Projects the image into a smaller latent space
Learns the diffusion model for only the latent
Re-projects the denoised latents back to image space

Benefits?

p(z|z1) zg(zt,t)

play with a demo here!

source: High-Resolution Image Synthesis with Latent Diffusion Models


https://huggingface.co/spaces/stabilityai/stable-diffusion
https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.pdf

Summarization

e \We show that a Diffusion Model is simply a special case of a Hierarchical
VAE




Summarization

e \We show that a Diffusion Model is simply a special case of a Hierarchical
VAE

e \We show that optimization boils down to learning a network to either predict
the original image, the source noise, or the score function at arbitrary

Gaussian noise corruption Iex%l
To
t




Summarization

We show that a Diffusion Model is simply a special case of a Hierarchical

VAE

We show that optimization boils down to learning a network to either predict
the original image, the source noise, or the score function at arbitrary
Gaussian noise corruption levels.

We draw an explicit connection to score-based generative modeling and show

they are equivalent in what:they madel:theip-abjective, and sampling process.
- @0 e




Summarization

e \We show that a Diffusion Model is simply a special case of a Hierarchical
VAE

e \We show that optimization boils down to learning a network to either predict
the original image, the source noise, or the score function at arbitrary
Gaussian noise corruption levels.

e We draw an explicit connection to score-based generative modeling and show
they are equivalent in what they model, their objective, and sampling process.

e We showcase how to build a conditional diffusion model, and apply guidance.

o,
— -th logp(x: | v)
y,0

source: ImageN, StableDiffusion, Dall-E 2.0

p(image | text_caption)



https://imagen.research.google/
https://stability.ai/blog/stable-diffusion-public-release
https://openai.com/dall-e-2/

Is it Good?

Diffusion models have amazing generative performance! L

- Probably state of the art generative model right now //j /MUPHS:\NM§ )

- Absolutely incredible at learning conditional distributions



https://www.deviantart.com/frisbii/art/Techmology-Ali-G-245911156

