" Students can access the Course Feedback System through:

.~ 1) Canvas
- 2) https://brown.evaluationkit.com
- 3) Personalized login link in the reminder emails sent from

course feedback@brown.edu.

CSCI 1470/2470 SR e

" | Deep Lear

e AL B

2

) 52)
18
¥
u
L ‘
.
.

Ritambhara Singh

April 21, 2023
Friday

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”

https://openai.com/dall-e-2/
https://brown.evaluationkit.com/
mailto:course_feedback@brown.edu

Review: Q-value and V-value Tables (made

up)

State #1
State #2
State #3
State #4
State #5
State #6

Action #1
0

0.1

-1

0

10

-10

Action #2
-1

1

-10

1.9

0

-10

State

State #1
State #2
State #3
State #4
State #5
State #6

Value
0

1.9
10
-10

Review: Value iteration pseudocode

17 Forall s, setV(s) := 0.

2. Repeat until convergence:
1. Foralls:
1. Foralla,setQ(s,a) = YT (s,a,5)[R(s,a,s")+yV(s)]
2. V(s):=max, Q(s,a)

3. Return Q

Review: Frozen Lake — final value table &
optimal policy

Environment Example Final Value Table Final P0l|cy

1 2 3 4

2 [o0%2f o fo
3 [0145{0 247

A O N -

Organizing RL problems/algorithms

Know T and R Don'tknow T and R

Simple/discrete Q-Learning

C | / ki For a more complete taxonomy
OMPIEX/CONLINUOUS of RL algorithms, see

https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.htm

[#citations-below

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

Tabular Q-learning

Motivation: Why Not Value Iteration?

In value iteration, we assume that we know the transition and reward
functions, but what if this isn’t the case?

{5,4,8.0}

How can we learn in this scenario?

Examples of Unknown T and/or R:

Self-Driving Cars Frozen Lake T,R="7

S

https://pixabay.com/illustrations/self-driving-car-autonomous-4309836/

Can’t design T for a self-driving car. What if we don’t know how slippery the lake is?
Too complex to model directly (i.e. T is unknown)

https://pixabay.com/illustrations/self-driving-car-autonomous-4309836/

First Attempt

Start in Frozen Lake with no knowledge of T or R

Run value iteration using
estimates of Tand R

S Take random
actions to 0(s,a) = Z T(s,a,s)R(s,a,s")

. Ve
estimate Tand R ’WD
V(s) = argmax, (Q(s, @))

OpenAl Gym (https://gym.openai.com/)

Gym is a toolkit for developing and comparing reinforcement learning
algorithms. It supports teaching agents everything from walking to playing
games like Pong or Pinball.

View documentation »
View on GitHub »

https://gym.openai.com/

Frozen Lake in OpenAl Gym

FF

The agent controls the movement of a character in a grid FHFH
FFFH

world. Some tiles of the grid are walkable, and others lead to HFFG
the agent falling into the water. Additionally, the movement !
direction of the agent is uncertain and only partially

depends on the chosen direction. The agent is rewarded for

finding a walkable path to a goal tile.

Winter is here. You and your friends were tossing around a frisbee at the
park when you made a wild throw that left the frisbee out in the middle of
the lake. The water is mostly frozen, but there are a few holes where the ice
has melted. If you step into one of those holes, you'll fall into the freezing
water. At this time, there's an international frisbee shortage, so it's
absolutely imperative that you navigate across the lake and retrieve the
disc. However, the ice is slippery, so you won't always move in the direction
you intend.

The surface is described using a grid like the following:

: starting point, safe)

: frozen surface, safe)

: hole, fall to your doom)

: goal, where the frisbee is located)

The episode ends when you reach the goal or fall in a hole. You receive a
reward of 1if you reach the goal, and zero otherwise.

</ VIEW SOURCE ON GITHUB

11

Frozen Lake ‘Wandering” Demo

https://colab.research.google.com/drive/1yBCDzAXIu9j0A2aT8fH1zm7beBg
tBI9yY#scrollTo=sl x2TsCpl15L

12

https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY#scrollTo=sI_x2TsCp15L
https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY#scrollTo=sI_x2TsCp15L

F

4646

H

7095

Problems with This Approach

F

5951

N
(o]
[e)]
(o]

F

1760

[y
=
>
[ul

F

1579

F

1015

I

252

H

1380

F

643

F

501

0

132

Values are the number
of times each state
was visited over 10000
episodes run in
OpenAl Gym

So, what is the
issue here?

We're extremely unlikely to reach the goal state through random
wandering, so our estimates of T and R will probably be bad

13

How to Improve?

Explore

Improve Policy

We can interleave policy improvement with wandering
(Get better at exploring by exploring)

But how do we improve our policy?

Q-Learning

Every time we take an action,
use the observed reward to
update our estimate of Q

V(s) is still max Q(s, a), so it
a

nnlv matters how we 11indate 0O

Q™(s,a) = E[R(s,a,s") +yV™(s")]
Q™(s,a) = Xge s P(s'|s,a)[R(s,a,s") +yV™(s")]

15

Q-Learning

Every time we take an action, use
the observed reward to update
our estimate of Q

V(s) is still max Q(s,a), so it only
matters how we update Q

Q™(s,a) = E[R(s,a,s") +yV™(s")]
Q™(s,a) = Xge s P(s'|s,a)[R(s,a,s") +yV™(s")]

16

Use Q to pick action a.
Observe transition and
get reward ry. Use 1y to

Q' Lea ' i ng update Q(sg, agp)

immediately

S

“ Every time we take an action, use
the observed reward to update
our estimate of Q

V(s) is still max Q(s,a), so it only
matters how we update Q

Q™(s,a) = E[R(s,a,s") +yV™(s")]
Q™(s,a) = Xge s P(s'|s,a)[R(s,a,s") +yV™(s")]

17

Use Q to pick action a.
Observe transition and
get reward ry. Use 1y to

Q' Lea ' i ng update Q(sg, agp)

immediately

S

“ Every time we take an action, use
the observed reward to update
our estimate of Q

V(s) is still max Q(s,a), so it only
matters how we update Q

Q™(s,a) = E[R(s,a,s") +yV™(s")]
Q™(s,a) = Xge s P(s'|s,a)[R(s,a,s") +yV™(s")]

18

Use Q to pick action a.

Observe transition and Repeat process for s;.
L . get reward ry. Use 1y to Update Q(sq, a;) with
Q‘ ea 'Ni ng update Q(sg,ap) 2}
immediately

. Every time we take an action, use S
the observed reward to update
our estimate of Q

- V(s)isstill max Q(s,a), so it only
matters how we update Q

Q™(s,a) = E[R(s,a,s") +yV™(s")]
Q™(s,a) = Xge s P(s'|s,a)[R(s,a,s") +yV™(s")]

19

How do we Update Q7

Basic Strategy:

Take a weighted average of our old Q estimate with our new Q
estimate

Q(s,a) =(1 - a)Qold (s,a) + A Qnew (s,a)

Where the hyperparameter a controls how quickly we learn

But what should Q,,.,, (s, a) be?

Determining Q,,.,, (s, a)

In value iteration, we took an expectation over all possible next states
and actions to get a new estimate for Q(s, a)

How do we change

Q(s,a) = ZS,T(S' a,s")(R(s,a,s") + yV(s")) this?

In Q-Learning, we only take one action and see one new state, and use
that one transition to update our estimate For Q(s,a), so our update
rule becomes

Q(s,a) = R(s,a,s") +yV(s")

i.e. the reward we observed For moving into state s’, plus whatever
our current value function estimate thinks is the value of being in

state s’
21

Any questions?

The Q-Learning Update Rule 272

-'
€2

Combining our new estimate for Q (s, a) with the weighted
average equation, the final update rule for Q-Learning
becomes

Q(s,a) =(1 - a)Qold (s,a) + A Qnew (s,a)

Q(s,a) = (1—a)Q(s,a) + a(R(s,a,s’) +yV(s"))

22

Q-Learning in Frozen Lake

* Initially, the agent is acting randomly, because all states have
a value of zero
* It would likely fall into the holes many times before
reaching the goal state for the first time

* a=.5y=.99
* Valuesin the grid are Q(s,a)
* Blank quadrants have a Q-value of 0

Q-Learning in Frozen Lake

a=.5y=.99
Values in the grid are Q(s,a)
Blank quadrants have a Q-value of 0

Initially, the agent is acting randomly, because all states have
a value of zero
* Itwould likely fall into the holes many times before
reaching the goal state for the first time, but for this
example assume it got lucky
At every transition in this path(each <s,a,r,s’> tuple), the
agent sees a reward of zero up until the final one, so none of
the Q-estimates change except the state before the goal
e Q(s,a)=1—-a)0+a(0)=0

Q-Learning in Frozen Lake

a=.5y=.99
Values in the grid are Q(s,a)
Blank quadrants have a Q-value of 0

Initially, the agent is acting randomly, because all states have
a value of zero
* It would likely fall into the holes many times before
reaching the goal state for the first time, but for this
example assume it got lucky
At every transition in this path(each <s,a,r,s’> tuple), the
agent sees a reward of zero up until the final one, so none of
the Q-estimates change except the state before the goal
* Q(s,a)=1—-—a)0+a(0)=0
The last transition has a positive reward though, so the
previous state action pair is changed
* Qs,a)=1—-a)0+a(1)= .5

Q-Learning in Frozen Lake

* In another episode, the agent will still act randomly(since
most values are still zero), unless it reaches the state next to
the goal, which now has a positive value.

e Assume it got lucky once again

* a=.5y=.99
* Valuesin the grid are Q(s,a)
* Blank quadrants have a Q-value of 0

Q-Learning in Frozen Lake

a=.5y=.99
Values in the grid are Q(s,a)
Blank quadrants have a Q-value of 0

In another episode, the agent will still act randomly(since
most values are still zero), unless it reaches the state next to
the goal, which now has a positive value.

* Assume it got lucky once again
When that happens, the previous state-action pair will be
updated using the value of the state next to the goal

* Qs,a)=1—-a)0+a(0+y*.5)=.5*.5%99

Q-Learning in Frozen Lake

* In another episode, the agent will still act randomly(since
most values are still zero), unless it reaches the state next to
the goal, which now has a positive value.

* Assume it got lucky once again

* When that happens, the previous state-action pair will be

updated using the value of the state next to the goal
* Q(s,a)=1—-a)0+ a(0+y=*.5)=.5*.5%99

* When choosing its next action from the state next to the
goal, the agent will choose argmax,Q (s, a), picking the
action corresponding to the value of .5 (since all the other
action-values for that state are zero).

* a=.5y=.99
* Valuesin the grid are Q(s,a)
* Blank quadrants have a Q-value of 0

Q-Learning in Frozen Lake

a=.5y=.99
Values in the grid are Q(s,a)
Blank quadrants have a Q-value of 0

In another episode, the agent will still act randomly(since
most values are still zero), unless it reaches the state next to
the goal, which now has a positive value.

e Assume it got lucky once again
When that happens, the previous state-action pair will be
updated using the value of the state next to the goal

* Qs,a)=1—-a)0+a(0+y*.5)=.5*.5%.99
When choosing its next action from the state next to the
goal, the agent will choose argmax,Q (s, a), picking the
action corresponding to the value of .5 (since all the other
action-values for that state are zero).
The value of the previous state is then updated again

e Q(s,a)=1—-a).5+a(1)=.75

Q-Learning in Frozen Lake

a=.5y=.99
Values in the grid are Q(s,a)
Blank quadrants have a Q-value of 0

In another episode, the agent will still act randomly(since
most values are still zero), unless it reaches the state next to
the goal, which now has a positive value.

e Assume it got lucky once again
When that happens, the previous state-action pair will be
updated using the value of the state next to the goal

* QGs,a)=1—-a)0+a(0+y=*.5)=.5*5%99
When choosing its next action from the state next to the
goal, the agent will choose argmax,Q (s, a), picking the
action corresponding to the value of .5 (since all the other
action-values for that state are zero).
The value of the previous state is then updated again

* Q(s,a)=1—-a).5+a(1)=.75
This process repeats over and over again until the Q-values
converge to Q*(s, a), the optimal Q-values.

Problem: Exploration/Exploitation

. But what if Frozen Lake had two
goal states?

31

Problem: Exploration/Exploitation

But what if Frozen Lake had two
goal states?

« Q-Learning could learn a path to
the .5 reward without ever
getting to the 1 reward state.

- Converges to a suboptimal
solution

32

Problem: Exploration/Exploitation

But what if Frozen Lake had two
goal states?
« Q-Learning could learn a path to

the .5 reward without ever
getting to the 1 reward state.

- Converges to a suboptimal
solution

How can we balance exploiting
knowledge we already have
with exploring unseen parts of
the state space?

Any ideas?

33

Solutlon Epsilon-Greedy Policies

Instead of always following our
estimate of Q, we instead take
random actions € percent of
the time, where € is a
hyperparameter Pick 3

Action Selection Procedure

We can also decrease € over r:gggrf‘“
time, as our estimates of Q
improve Random

Number

- Ex: after each episode, set € = r

(EE—) where i is the number of

Pick
Best
Action

34

Any questions?

Q-Learning Update in Code ?
&

if np.random.rand(1l) < epsilon:
act = env.action_space.sample()

else:
act = np.argmax(Q[st])
nst, rwd, done, _ = env.step(act)

Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd +
gamma*V[nst])

Q-Learning Code Demo

https://colab.research.google.com/drive/1yBCDzAXIu9j0A2aT8fH1zm7beBg
tBI9yY#scrollTo=sl x2TsCpl15L

36

https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY#scrollTo=sI_x2TsCp15L
https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY#scrollTo=sI_x2TsCp15L

Organizing RL problems/algorithms

Know T and R Don’t know T and R

Simple/discrete Value iteration Q-Learning

Deep Q-Networks

For a more complete taxonomy

Complex/continuous REINFORCE of RL algorithms, see
https://spinningup.openai.com/e

n/latest/spinningup/rl_intro2.htm
Actor-Critic [#citations-below

37

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

Deep Q-learning

Limitations of Tabular Q-Learning

* Tabular methods can’t handle large or continuous state spaces
* Can’t have a table for infinite Q or V values

 Lots of problems have these kinds of state spaces

* Robotic navigation: The state of the robot could be (map of environment, position), where position is a 2-D
vector. Infinite possible states in this setup.

e Go: has ~107170 states

b rosttion argmaxq(Q(s,a))
R i}i :

TS X Action(Ex: Left,
‘ e () ‘ Right, Up, Down)

Too many possible
values for a table

39

https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg
https://www.flickr.com/photos/mocklogic/8988098941
https://www.flickr.com/photos/mocklogic/8988098941

Beyond Tabular Learning

In Q-learning, we are learning a function Q that maps
from a state-action pair to a real number

Q:(s,a) o R

Or, equivalently, from a state to a vector of real numbers
Q: (s) » Rl

Instead of storing every (s,a) in a table to learn this
function, we can learn a function to approximate Q
using a (relatively) small set of parameters 6

Q:(s,a,0) » R, 0 K |SXA|

Neural Nets as Function Approximators

=3 § 3=
o —g O gm

Neural networks are excellent function approximators, so we can
use a deep network to learn this parameterized function

41

Frozen Lake Example

How do we set
up this using
neural
networks?

42

Frozen Lake Example

: One-ho
* Feed a one-hot representation of ‘ O Network Q

the state into a neural network to Vector VEIIEE
approximate the Q-value for each
action

* One-hot vector of length 16 for
frozen lake

———
___——

* Can also pass in a more complex
state to the Q-network rather
than a one hot representation.

* Useful when the number of states
is very large, making a one hot
representation impractical

 Or when states are continuous

Q(S, a;
Q(S; as;
Q(S; a,

vl
\

43

TF Example Code for Frozen Lake

Weights for Q-Network
Q = tf.variable(tf.random.uniform([16,4],0,0.01))
Q-value function
def gVals(inptSt):
oneH = tf.one_hot(inptSt,16)
gVals = tf.matmul([oneH],Q)
return gVvals
argmax over g-values to get estimated best action
action = tf.argmax(qVals(st),1)

Atari Example

« 81x81 Images of the game

« Evenif each pixel is just on or off,
that's 281%81 possible states, way too

many for a table

* They're actually colored, so real
scenario is even worse

* Need a different approachto learn Q
and V values for large state spaces
like these

https://www.youtube.com/watch?v=TmPfTpjtdgg

How To Train This Q Network?

The original Q-learning update is not a minimization problem

Q(s,a) =(1—a)Q(s,a) + a(R(s,a,s’) +yV(s"))

So how can we transform this into a loss function we can use?

Recap

Tabular Q-learning

Deep Q-learning

For more reading: https://huggingface.co/learn/deep-rl-course/unit2/introduction?fw=pt

Wandering to estimate T and R

Q-learning: Explore + Improve

Epsilon-Greedy Policies

Limitations of Tabular Q-learning

Neural nets for Q approximation

Tensorflow code

Q™(s,a) = E[R(s,a,s") +yV™(s")]

Q™(s,a) = Xae s P(s'ls,a)[R(s,a,s") +yV™(s")]

o090 000

Y. A & X
R JENE

I

Z

https://huggingface.co/learn/deep-rl-course/unit2/introduction?fw=pt

