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DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”
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Review: Q-value and V-value Tables (made 
up)

Action #1 Action #2
State #1 0 -1
State #2 0.1 1
State #3 -1 -10
State #4 0 1.9
State #5 10 0
State #6 -10 -10
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State Value
State #1 0
State #2 1
State #3 -1
State #4 1.9
State #5 10
State #6 -10



Review: Value iteration pseudocode
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•  



Review: Frozen Lake – final value table & 
optimal policy

4

1 
1

2

3

4

2 3 4 
Environment Example Final Value Table

1 

0.068 0.061 0.074 0.055

0.092 0 0.112 0

0.145 0.247 0.3 0
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Simple/discrete

Complex/continuous

Value iteration
 

Q-Learning
 

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy 
of RL algorithms, see 
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.htm
l#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below


Tabular Q-learning
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Motivation: Why Not Value Iteration?
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In value iteration, we assume that we know the transition and reward 
functions, but what if this isn’t the case?

How can we learn in this scenario? 



Examples of Unknown T and/or R:
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https://pixabay.com/illustrations/self-driving-car-autonomous-4309836/

Self-Driving Cars 

Can’t design T for a self-driving car.
Too complex to model directly

S F F F

F H F H
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Frozen Lake

What if we don’t know how slippery the lake is?
(i.e. T is unknown)

T,R = ?

https://pixabay.com/illustrations/self-driving-car-autonomous-4309836/


First Attempt
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Take random 
actions to 
estimate T and R 

S F F F

F H F H

F F F H

H F F G

Run value iteration using 
estimates of T and R

 

 

Start in Frozen Lake with no knowledge of T or R



OpenAI Gym (https://gym.openai.com/)
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https://gym.openai.com/


Frozen Lake in OpenAI Gym
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Frozen Lake ‘Wandering’ Demo

https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBg
tB9yY#scrollTo=sI_x2TsCp15L
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https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY#scrollTo=sI_x2TsCp15L
https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY#scrollTo=sI_x2TsCp15L


Problems with This Approach

We’re extremely unlikely to reach the goal state through random 
wandering, so our estimates of T and R will probably be bad
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Values are the number 
of times each state 
was visited over 10000 
episodes run in 
OpenAI Gym 

So, what is the 
issue here? 



How to Improve? 
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Explore 

Improve Policy

We can interleave policy improvement with wandering
(Get better at exploring by exploring) 

But how do we improve our policy? 



Q-Learning 

•  
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Q-Learning 

•  
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Q-Learning 

•  
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Q-Learning 

•  
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Q-Learning 

•  
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How do we Update Q? 

Basic Strategy:

Take a weighted average of our old Q estimate with our new Q 
estimate
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How do we change 
this?



The Q-Learning Update Rule
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Any questions?



Q-Learning in Frozen Lake

 

1

• Initially, the agent is acting randomly, because all states have 
a value of zero

• It would likely fall into the holes many times before 
reaching the goal state for the first time



Q-Learning in Frozen Lake
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Q-Learning in Frozen Lake

 

1.5

 



Q-Learning in Frozen Lake

• In another episode, the agent will still act randomly(since 
most values are still zero), unless it reaches the state next to 
the goal, which now has a positive value.

• Assume it got lucky once again

1.5

 



Q-Learning in Frozen Lake
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Q-Learning in Frozen Lake
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Q-Learning in Frozen Lake
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Q-Learning in Frozen Lake
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Problem: Exploration/Exploitation   

• But what if Frozen Lake had two 
goal states? 
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Problem: Exploration/Exploitation   

• But what if Frozen Lake had two 
goal states? 

• Q-Learning could learn a path to 
the .5 reward without ever 
getting to the 1 reward state. 

• Converges to a suboptimal 
solution

32
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Problem: Exploration/Exploitation   

• But what if Frozen Lake had two 
goal states? 

• Q-Learning could learn a path to 
the .5 reward without ever 
getting to the 1 reward state. 

• Converges to a suboptimal 
solution

• How can we balance exploiting 
knowledge we already have 
with exploring unseen parts of 
the state space? 
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Any ideas?



Solution: Epsilon-Greedy Policies 
•  

34

 

Pick a 
random 
action

 

Pick 
Best 

Action

 

Action Selection Procedure



Q-Learning Update in Code 

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = np.argmax(Q[st])

nst, rwd, done, _ = env.step(act)

Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd + 
gamma*V[nst])
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Any questions?



Q-Learning Code Demo

https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBg
tB9yY#scrollTo=sI_x2TsCp15L
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https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY#scrollTo=sI_x2TsCp15L
https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY#scrollTo=sI_x2TsCp15L
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Simple/discrete

Complex/continuous

Value iteration
 

Q-Learning
 

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy 
of RL algorithms, see 
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.htm
l#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below


Deep Q-learning
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Limitations of Tabular Q-Learning 
• Tabular methods can’t handle large or continuous state spaces

• Can’t have a table for infinite Q or V values

• Lots of problems have these kinds of state spaces
• Robotic navigation: The state of the robot could be (map of environment, position), where position is a 2-D 

vector. Infinite possible states in this setup. 
• Go: has ~10^170 states 
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Too many possible 
values for a table 

Action(Ex: Left, 
Right, Up, Down) 

 

https://en.wikipedia.org/wi
ki/File:Cartoon_Robot.svg

s =

Position

 

Map

https://www.flickr.com/photos
/mocklogic/8988098941

https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg
https://www.flickr.com/photos/mocklogic/8988098941
https://www.flickr.com/photos/mocklogic/8988098941


Beyond Tabular Learning 
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In Q-learning, we are learning a function Q that maps 
from a state-action pair to a real number

 

 

Or, equivalently, from a state to a vector of real numbers 

 



Neural Nets as Function Approximators
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Neural networks are excellent function approximators, so we can 
use a deep network to learn this parameterized function 

  

  



Frozen Lake Example 
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State
Q 

Values
How do we set 
up this using 

neural 
networks?



Frozen Lake Example 

• Feed a one-hot representation of 
the state into a neural network to 
approximate the Q-value for each 
action

• One-hot vector of length 16 for 
frozen lake

• Can also pass in a more complex 
state to the Q-network rather 
than a one hot representation. 

• Useful when the number of states 
is very large, making a one hot 
representation impractical 

• Or when states are continuous
43
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TF Example Code for Frozen Lake 

# Weights for Q-Network 
Q = tf.Variable(tf.random.uniform([16,4],0,0.01))
# Q-value function 
def qVals(inptSt):

oneH = tf.one_hot(inptSt,16)
qVals = tf.matmul([oneH],Q)
return qVals

# argmax over q-values to get estimated best action
action = tf.argmax(qVals(st),1)

44



Atari Example 
•  
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https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg


How To Train This Q Network?

The original Q-learning update is not a minimization problem 
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So how can we transform this into a loss function we can use? 

 



Recap
Wandering to estimate T and R

Q-learning:  Explore + Improve

Limitations of Tabular Q-learning

Tensorflow code

Deep Q-learning
Neural nets for Q approximation

Tabular Q-learning

Epsilon-Greedy Policies

For more reading: https://huggingface.co/learn/deep-rl-course/unit2/introduction?fw=pt

https://huggingface.co/learn/deep-rl-course/unit2/introduction?fw=pt



