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DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”

https://openai.com/dall-e-2/
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Simple/discrete

Complex/continuous

Value iteration
 

Q-Learning
 

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy 
of RL algorithms, see 
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.htm
l#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below


Review: Q-Learning 
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Review: The Q-Learning Update Rule
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Review: Q-Learning Update in Code 

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = np.argmax(Q[st])

nst, rwd, done, _ = env.step(act)

Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd + 
gamma*V[nst])
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Review: Neural Nets as Function 
Approximators
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Neural networks are excellent function approximators, so we can 
use a deep network to learn this parameterized function 

  

  



Review: TF Example Code for Frozen Lake 

# Weights for Q-Network 
Q = tf.Variable(tf.random.uniform([16,4],0,0.01))
# Q-value function 
def qVals(inptSt):

oneH = tf.one_hot(inptSt,16)
qVals = tf.matmul([oneH],Q)
return qVals

# argmax over q-values to get estimated best action
action = tf.argmax(qVals(st),1)
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Designing our Loss Function

•  
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Designing our Loss Function 
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We can then use the difference between our observed 
estimate and our old estimate as a loss function 

 

 

This loss is called the ‘temporal difference error’ or TD(0). The 
zero refers to how many steps we take before comparing our old 

estimate to the new. 



Designing our Loss Function 
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TD(0) also isn’t the only option for a loss function. You can wait 
any number of steps in the environment before updating your 
estimates of Q. If you waited one additional step, you would 

have the TD(1) error. 

 

In practice, we actually use the squared difference
between our current estimate and new observation

(to more heavily penalize large errors and to ensure loss is always positive)



DQN in Tensorflow 

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = np.argmax(Q[st])

nst, rwd, done, _ = env.step(act)

Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd + 
gamma*V[nst])
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• Start with original tabular 
Q-Learning Code

• Replace Q table with Q 
network

• Replace weighted Q update 
with loss function

• Add gradient update step

Convert this into deep q-learning code



DQN in Tensorflow 

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = np.argmax(Q[st])

nst, rwd, done, _ = env.step(act)

Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd + 
gamma*V[nst])

12

• Start with original tabular 
Q-Learning Code



DQN in Tensorflow 

Q_values = qVals(st)

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = tf.argmax(Q_values)

nst, rwd, done, _ = env.step(act)

Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd + 
gamma*V[nst])
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• Start with original tabular 
Q-Learning Code

• Replace Q table with Q 
network



DQN in Tensorflow 

Q_values = qVals(st)
if np.random.rand(1) < epsilon:

act = env.action_space.sample()
else:

act = tf.argmax(Q_values)
nst, rwd, done, _ = env.step(act)
nextQ = qVals(nst)
target_Q = Q_values.numpy(); 
target_Q[act] = rwd + np.max(nextQ)
loss = tf.reduce_sum(tf.square(Q_values – target_Q))
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• Start with original tabular 
Q-Learning Code

• Replace Q table with Q 
network

• Replace weighted Q update 
with loss function



DQN in Tensorflow 

Q_values = qVals(st)
if np.random.rand(1) < epsilon:

act = env.action_space.sample()
else:

act = tf.argmax(Q_values)
nst, rwd, done, _ = env.step(act)
nextQ = qVals(nst)
target_Q = Q_values.numpy(); 
target_Q[act] = rwd + np.max(nextQ)
loss = tf.reduce_sum(tf.square(Q_values – target_Q))
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• Start with original tabular 
Q-Learning Code

• Replace Q table with Q 
network

• Replace weighted Q update 
with loss function

Note that we treat the next-step estimate of Q as our 
optimization “target” and do not differentiate through it



DQN in Tensorflow 

Q_values = qVals(st)

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = tf.argmax(Q_values)

nst, rwd, done, _ = env.step(act)

nextQ = qVals(nst)

target_Q = Q_values.numpy(); 

target_Q[act] = rwd + np.max(nextQ)

loss = tf.reduce_sum(tf.square(Q_values – target_Q))

optimizer.apply_gradients(tape.gradient(loss,Q),Q) 16

• Start with original tabular 
Q-Learning Code

• Replace Q table with Q 
network

• Replace weighted Q update 
with loss function

• Add gradient update step

Any questions?



Code Demo 

https://drive.google.com/open?id=1cKkuEdoqnwe99dhxnBUz5KcRqRUqoFnk 
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https://drive.google.com/open?id=1cKkuEdoqnwe99dhxnBUz5KcRqRUqoFnk


Beyond Deep Q Networks (DQN)

• DQN is amazing!
• Can learn optimal play for 

Breakout, other Atari games given 
only raw pixels as input

•Does it have any weaknesses?
• DQN uses a neural net to learn an 

approximation of the Q function
• Could that ever be a hard learning 

problem?
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https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg


Q Functions can be complex...
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Q Functions can be complex...
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Gnarly function to learn to approximate...



...but policies can still be simple
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If the complexity in the Q function doesn’t affect the policy...
...why bother modeling it?



An Idea:

• Instead of learning a Q Network, and then extracting the policy from 
it:

• ...why don’t we just directly learn a Policy Network?
• i.e. have a neural net that takes in a state and outputs an action

22
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Simple/discrete

Complex/continuous

Value iteration
 

Q-Learning
 

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy 
of RL algorithms, see 
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.htm
l#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below


Policy Networks

•  
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Using a Policy Network

•  
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Training Policy Networks

• How do we train a network like this?

• We can’t just “adapt Q learning” somehow—this is a fundamentally 
different beast

• The study of how to learn policy networks lies at the core of most 
modern deep reinforcement learning research

• Family of learning algorithms known as Policy Gradient methods

• Let’s make this concrete via a specific example...
26

 

 



The “Cart Pole” Environment
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Cart Pole

• Attempt to keep a pole vertically 
balanced on a moving cart

• Continuous-state MDP
• Not solvable with tabular Q-learning

• Still a “toy problem”
• This is an instance of a dynamic 

equilibrium problem in classical 
robotics / control theory.

• There exist closed-form solutions to 
the problem.

• But it’s also a fun test-case for RL ☺
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[OpenAI Gym]

Note: the ‘jumps’ in the video are from the agent 
failing and the simulation restarting again

*A closed-form solution (or closed form expression) is any formula that can be evaluated in a 
finite number of standard operations.

http://www-robotics.cs.umass.edu/~grupen/503/SLIDES/cart-pole.pdf


Cart Pole MDP Formulation

• State: cart position, cart velocity, pole angle, pole tip velocity

• Actions: push cart to left or right

• Transition function: (deterministic) simulation of Newtonian physics

• Reward function: 1 for every step taken
• i.e. rewards keeping the pole balanced for as many steps as possible 29

Vel (Cart)

Pos (Cart)

Angle (Pole)

Vel (Pole)

Let’s define S, A,T, R



Training a Policy Network for Cart Pole

• Would be easy to do with supervised learning (i.e. if we had a 
ground-truth expert demonstration to follow)

• Just use cross-entropy loss on the ground-truth “correct” action at 
every time step

• But we don’t have supervision in RL...so what do we do instead?
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Training a Policy Network for Cart Pole

•  
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Velocity

What should we 
do?



Training a Policy Network for Cart Pole

•  
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Training a Policy Network for Cart Pole

•  
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Not so fast...

•  
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argmax
or

sample

 

Cartpole simulator

 

Do we anticipate any issues running 
SGD?



Not so fast...

•  
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argmax
or

sample

 

Cartpole simulator

 

This is not differentiable...

This is definitely not differentiable...



The Policy Gradient Theorem to the Rescue

•  
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We only need the gradient of this part, which 
is our (fully differentiable) policy network!

 

 

Just like computing 
gradients through a 

classification network



Policy Gradient: Why It Works

•  
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Policy Gradient: Why It Works

•  
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Policy Gradient: Why It Works

•  
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Policy Gradient: Why It Works

•  
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Any questions?



REINFORCE: Pseudo Code

•  
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Your favorite optimizer (SGD, Adam, ...)



REINFORCE in action on Cart Pole

42https://www.youtube.com/watch?v=qx-KNh0I4CM

https://www.youtube.com/watch?v=qx-KNh0I4CM


Reinforce vs DQN

Pros Cons
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What are the pros and cons of using 
REINFORCE over Deep Q-Network?



Reinforce vs DQN

Pros

• Policy often easier to learn than Q function

• Automates explore vs. exploit tradeoff
• Policy network starts off random and gradually 

becomes better as it is trained for more and 
more episodes

• Can learn stochastic policies
• More naturalistic behavior

• In practice, can converge faster than DQN

Cons

• Finds local optima more 
often than DQN...

• Unstable training

• Gradient updates only at 
end of each game (DQN 
updates after every step)
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We’ll see how to fix these two 
issues in the next lecture...



Recap
Review of Q-learning

Deep Q-Network (DQN)

Q-Network 🡪 Policy Network

REINFORCE (Policy Gradient Network)

Policy gradient 
learning

Cart Pole Environment

Deep Q-learning

DQN in Tensorflow

Cartpole simulator




