
Deep Learning
CSCI 1470/2470

Spring 2023

Ritambhara Singh

April 24, 2023

Monday

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”

https://openai.com/dall-e-2/

2

Simple/discrete

Complex/continuous

Value iteration

Q-Learning

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy
of RL algorithms, see
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.htm
l#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

Review: Q-Learning

3

S F F F

F H F H

F F F H

H F F G

Review: The Q-Learning Update Rule

4

Review: Q-Learning Update in Code

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = np.argmax(Q[st])

nst, rwd, done, _ = env.step(act)

Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd +
gamma*V[nst])

5

Review: Neural Nets as Function
Approximators

6

Neural networks are excellent function approximators, so we can
use a deep network to learn this parameterized function

Review: TF Example Code for Frozen Lake

Weights for Q-Network
Q = tf.Variable(tf.random.uniform([16,4],0,0.01))
Q-value function
def qVals(inptSt):

oneH = tf.one_hot(inptSt,16)
qVals = tf.matmul([oneH],Q)
return qVals

argmax over q-values to get estimated best action
action = tf.argmax(qVals(st),1)

7

Designing our Loss Function

•

8

Designing our Loss Function

9

We can then use the difference between our observed
estimate and our old estimate as a loss function

This loss is called the ‘temporal difference error’ or TD(0). The
zero refers to how many steps we take before comparing our old

estimate to the new.

Designing our Loss Function

10

TD(0) also isn’t the only option for a loss function. You can wait
any number of steps in the environment before updating your
estimates of Q. If you waited one additional step, you would

have the TD(1) error.

In practice, we actually use the squared difference
between our current estimate and new observation

(to more heavily penalize large errors and to ensure loss is always positive)

DQN in Tensorflow

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = np.argmax(Q[st])

nst, rwd, done, _ = env.step(act)

Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd +
gamma*V[nst])

11

• Start with original tabular
Q-Learning Code

• Replace Q table with Q
network

• Replace weighted Q update
with loss function

• Add gradient update step

Convert this into deep q-learning code

DQN in Tensorflow

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = np.argmax(Q[st])

nst, rwd, done, _ = env.step(act)

Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd +
gamma*V[nst])

12

• Start with original tabular
Q-Learning Code

DQN in Tensorflow

Q_values = qVals(st)

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = tf.argmax(Q_values)

nst, rwd, done, _ = env.step(act)

Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd +
gamma*V[nst])

13

• Start with original tabular
Q-Learning Code

• Replace Q table with Q
network

DQN in Tensorflow

Q_values = qVals(st)
if np.random.rand(1) < epsilon:

act = env.action_space.sample()
else:

act = tf.argmax(Q_values)
nst, rwd, done, _ = env.step(act)
nextQ = qVals(nst)
target_Q = Q_values.numpy();
target_Q[act] = rwd + np.max(nextQ)
loss = tf.reduce_sum(tf.square(Q_values – target_Q))

14

• Start with original tabular
Q-Learning Code

• Replace Q table with Q
network

• Replace weighted Q update
with loss function

DQN in Tensorflow

Q_values = qVals(st)
if np.random.rand(1) < epsilon:

act = env.action_space.sample()
else:

act = tf.argmax(Q_values)
nst, rwd, done, _ = env.step(act)
nextQ = qVals(nst)
target_Q = Q_values.numpy();
target_Q[act] = rwd + np.max(nextQ)
loss = tf.reduce_sum(tf.square(Q_values – target_Q))

15

• Start with original tabular
Q-Learning Code

• Replace Q table with Q
network

• Replace weighted Q update
with loss function

Note that we treat the next-step estimate of Q as our
optimization “target” and do not differentiate through it

DQN in Tensorflow

Q_values = qVals(st)

if np.random.rand(1) < epsilon:

act = env.action_space.sample()

else:

act = tf.argmax(Q_values)

nst, rwd, done, _ = env.step(act)

nextQ = qVals(nst)

target_Q = Q_values.numpy();

target_Q[act] = rwd + np.max(nextQ)

loss = tf.reduce_sum(tf.square(Q_values – target_Q))

optimizer.apply_gradients(tape.gradient(loss,Q),Q) 16

• Start with original tabular
Q-Learning Code

• Replace Q table with Q
network

• Replace weighted Q update
with loss function

• Add gradient update step

Any questions?

Code Demo

https://drive.google.com/open?id=1cKkuEdoqnwe99dhxnBUz5KcRqRUqoFnk

17

https://drive.google.com/open?id=1cKkuEdoqnwe99dhxnBUz5KcRqRUqoFnk

Beyond Deep Q Networks (DQN)

• DQN is amazing!
• Can learn optimal play for

Breakout, other Atari games given
only raw pixels as input

•Does it have any weaknesses?
• DQN uses a neural net to learn an

approximation of the Q function
• Could that ever be a hard learning

problem?

18

https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg

Q Functions can be complex...

19

Q Functions can be complex...

20

Gnarly function to learn to approximate...

...but policies can still be simple

21

If the complexity in the Q function doesn’t affect the policy...
...why bother modeling it?

An Idea:

• Instead of learning a Q Network, and then extracting the policy from
it:

• ...why don’t we just directly learn a Policy Network?
• i.e. have a neural net that takes in a state and outputs an action

22

23

Simple/discrete

Complex/continuous

Value iteration

Q-Learning

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy
of RL algorithms, see
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.htm
l#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

Policy Networks

•

24

Using a Policy Network

•

25

Training Policy Networks

• How do we train a network like this?

• We can’t just “adapt Q learning” somehow—this is a fundamentally
different beast

• The study of how to learn policy networks lies at the core of most
modern deep reinforcement learning research

• Family of learning algorithms known as Policy Gradient methods

• Let’s make this concrete via a specific example...
26

The “Cart Pole” Environment

27

Cart Pole

• Attempt to keep a pole vertically
balanced on a moving cart

• Continuous-state MDP
• Not solvable with tabular Q-learning

• Still a “toy problem”
• This is an instance of a dynamic

equilibrium problem in classical
robotics / control theory.

• There exist closed-form solutions to
the problem.

• But it’s also a fun test-case for RL ☺

28

[OpenAI Gym]

Note: the ‘jumps’ in the video are from the agent
failing and the simulation restarting again

*A closed-form solution (or closed form expression) is any formula that can be evaluated in a
finite number of standard operations.

http://www-robotics.cs.umass.edu/~grupen/503/SLIDES/cart-pole.pdf

Cart Pole MDP Formulation

• State: cart position, cart velocity, pole angle, pole tip velocity

• Actions: push cart to left or right

• Transition function: (deterministic) simulation of Newtonian physics

• Reward function: 1 for every step taken
• i.e. rewards keeping the pole balanced for as many steps as possible 29

Vel (Cart)

Pos (Cart)

Angle (Pole)

Vel (Pole)

Let’s define S, A,T, R

Training a Policy Network for Cart Pole

• Would be easy to do with supervised learning (i.e. if we had a
ground-truth expert demonstration to follow)

• Just use cross-entropy loss on the ground-truth “correct” action at
every time step

• But we don’t have supervision in RL...so what do we do instead?

30

Training a Policy Network for Cart Pole

•

31

Velocity

What should we
do?

Training a Policy Network for Cart Pole

•

32

Training a Policy Network for Cart Pole

•

33

Not so fast...

•

34

argmax
or

sample

Cartpole simulator

Do we anticipate any issues running
SGD?

Not so fast...

•

35

argmax
or

sample

Cartpole simulator

This is not differentiable...

This is definitely not differentiable...

The Policy Gradient Theorem to the Rescue

•

36

We only need the gradient of this part, which
is our (fully differentiable) policy network!

Just like computing
gradients through a

classification network

Policy Gradient: Why It Works

•

37

Policy Gradient: Why It Works

•

38

Policy Gradient: Why It Works

•

39

Policy Gradient: Why It Works

•

40

Any questions?

REINFORCE: Pseudo Code

•

41

Your favorite optimizer (SGD, Adam, ...)

REINFORCE in action on Cart Pole

42https://www.youtube.com/watch?v=qx-KNh0I4CM

https://www.youtube.com/watch?v=qx-KNh0I4CM

Reinforce vs DQN

Pros Cons

43

What are the pros and cons of using
REINFORCE over Deep Q-Network?

Reinforce vs DQN

Pros

• Policy often easier to learn than Q function

• Automates explore vs. exploit tradeoff
• Policy network starts off random and gradually

becomes better as it is trained for more and
more episodes

• Can learn stochastic policies
• More naturalistic behavior

• In practice, can converge faster than DQN

Cons

• Finds local optima more
often than DQN...

• Unstable training

• Gradient updates only at
end of each game (DQN
updates after every step)

44

We’ll see how to fix these two
issues in the next lecture...

Recap
Review of Q-learning

Deep Q-Network (DQN)

Q-Network 🡪 Policy Network

REINFORCE (Policy Gradient Network)

Policy gradient
learning

Cart Pole Environment

Deep Q-learning

DQN in Tensorflow

Cartpole simulator

