CSCI 1470/2470 Spring 2023

Ritambhara Singh

April 26, 2023 Wednesday

Deep Learning

DALL-E 2 prompt "a painting of deep underwater with a yellow submarine in the bottom right corner"

Review: Policy Network for Cart Pole

Policy Gradient:
$$-\sum_{t=1}^{T} \nabla \log p(a_t|s_t) D(s_t, a_t)$$

Review: REINFORCE: Pseudo Code

Initialize model weights θ

Repeat until done (converge, time limit expired, etc.):

Run N episodes of environment simulation, each for *T* timesteps For each episode

For t = 1 to t = T

 $\theta \leftarrow \theta + \text{OptimizerStep}(\nabla \log p(a_t|s_t)D(s_t, a_t))$

Your favorite optimizer (SGD, Adam, ...)

Return θ

Reinforce vs DQN

Pros

- Policy often easier to learn than Q function
- Automates explore vs. exploit tradeoff
 - Policy network starts off random and gradually becomes better as it is trained for more and more episodes
- Can learn stochastic policies
 - More naturalistic behavior
- In practice, can converge faster than DQN

Cons

- Finds local optima more often than DQN...
- Unstable training
- Gradient updates only at end of each game (DQN updates after every step)

We'll see how to fix these two issues in the next lecture...

High "sample complexity"

• Must play an entire episode to get gradient, takes many episodes to learn

...which will actually give us a solution for this problem via a simple extension

The Solution: Looking at Policy Gradient through a different "lens"

Organizing RL problems/algorithms

For a more complete taxonomy of RL algorithms, see <u>https://spinningup.openai.com/e</u> <u>n/latest/spinningup/rl_intro2.htm</u> <u>l#citations-below</u>

The "Actor Critic" Framework

*Consider the REINFORCE gradient:

$$-\sum_{t=1}^{T} \nabla \log p(a_t|s_t) D(s_t, a_t)$$

The "Actor Critic" Framework

[•]Consider the REINFORCE gradient:

The "Actor Critic" Framework

*Consider the REINFORCE gradient:

Actor: Specifies how to (probabilistically) choose actions for a given state

The trick to solving our problems:

Coming up with a better critic function...

Critic: "Scores" the goodness/badness of taking an action

Different critics are possible

- E.g. $Q(s_t, a_t)$, if we knew it
- Recall that D(s_t, a_t) is our single-episode estimate of Q(s_t, a_t)

The Problem: High Variance

• To understand why this happens, have to dig into the math a little bit

High Variance

- For a random variable X: $Var[X] = E[(X E[X])^2]$
 - The expected squared difference from the expected value
 - "The average distance from the average"

High Variance in REINFORCE

- The REINFORCE gradient: $-\sum_{t=1}^{T} \nabla \log p(a_t|s_t) D(s_t, a_t)$
- $D(s_t, a_t)$ is a random variable, because it depends on following a stochastic policy (and a potentially stochastic transition function)
- Assertion: $D(s_t, a_t)$ is high variance
- Why?
 - $D(s_t, a_t)$ can be very low **or** very high depending on subsequent actions
 - Especially for actions taken early in the episode
 - Especially early in training, when the policy is mostly random

High Variance Rewards: Frozen Lake

- Frozen Lake
 - S: Starting Point
 - F: Frozen
 - H: Hole, ends episode
 - G: Goal

Very Low Reward

Very High Reward

High Variance Rewards: VizDoom

https://www.oreilly.com/ideas/reinforcement-learning-with-tensorflow

High Variance in REINFORCE

- $D(s_t, a_t)$ is high variance
- This in turn makes $-\sum_{t=1}^{T} \nabla \log p(a_t|s_t) D(s_t, a_t)$ have high variance
- What's the consequence of high variance gradients?
 - Magnitude and direction of gradients is unstable
 - Need very low learning rate to keep training from blowing up
 - Low learning rate → need *lots* of training episodes to converge

High Variance in REINFORCE

- Naïve solution: if the gradients fluctuate too much, just scale them so they don't fluctuate as much
 - $-\sum_{t=1}^{T} \nabla \log p(a_t|s_t) D(s_t, a_t) \rightarrow -\beta \sum_{t=1}^{T} \nabla \log p(a_t|s_t) D(s_t, a_t)$
- Why won't this work?
 - Scaling the gradients is equivalent to scaling the learning rate, which is exactly what we're trying to avoid!

Solving High Variance: A Better Critic

• A better critic function:

$$A(s_t, a_t) = Q(s_t, a_t) - V(s_t)$$

= $Q(s_t, a_t) - \max_{a_t} Q(s_t, a_t)$

- This is called the *advantage function*
 - The "advantage" of taking action a_t vs. taking the best possible action in state s_t , under the current policy
- Claim: $A(s_t, a_t)$ has lower variance than $Q(s_t, a_t)$ (or $D(s_t, a_t)$)

Why $A(s_t, a_t)$ has lower variance

• Consider these two states in Cart Pole

Why $A(s_t, a_t)$ has lower variance

• What would be the Q value of taking the \Box action in either state?

 $Q(S_A, \leftarrow)$: Good! (helps stat

 $Q(S_B, \leftarrow)$: Bad... (tipping over and this isn't helping)

 $Q(S_A, \leftarrow) - Q(S_B, \leftarrow)$: Large, i.e. high variance...

Why $A(s_t, a_t)$ has lower variance

• Now consider the A value of taking the \Box action in either state:

 $A(S_A, \leftarrow) - A(S_B, \leftarrow)$: Small difference! Lower variance

The Advantage of Using Advantage

- The main idea: to learn a policy, it doesn't matter whether some states are better than others. All that matters is which actions are better for a given state.
- *Factor out* the difference in state value and just look at the difference in action value
- $|A(s_1, a_1) A(s_2, a_2)| < |Q(s_1, a_1) Q(s_2, a_2)|$

Using Advantage in REINFORCE

• Substitute in the advantage function for the critic:

$$-\sum_{t=1}^{T} \nabla \log p(a_t|s_t) A(s_t, a_t)$$

• Of course, in practice, we don't have Q, so we use D instead:

$$-\sum_{t=1}^{T} \nabla \log p(a_t|s_t) (D(s_t, a_t) - V(s_t))$$
 Are we done?

Wait a minute...we also don't have V.29

Value Networks

- Use another neural net, the *Value Network*, to learn an approx. of *V*
- Like Policy Network, architecture depends on the MDP being solved (i.e. what data representation its state uses)
- For Cart Pole, state is a 4D vector of real numbers
 - [Cart pos, cart vel, pole ang, pole tip vel]
- Fully connected net is appropriate here:

How to Train a Value Network

- Recall the definition of the Value Function
 - Expected future return from being in a given state
 - $V(s_t) = \max_{a_t} Q(s_t, a_t)$
- What data do we get from each episode that we might use for training?
 - The discounted future reward that we got in that episode, from each timestep
 - $D(s_t, a_t) = \sum_{i=t}^{T} \gamma^{i-1} r(s_i, a_i, s_{i+1})$
- Idea: just as we used D as an approximation for Q, let's also use it to approximate V
 - i.e. train the Value Network with (input, output) pairs of the form $(s_t, D(s_t, a_t))$
 - When trained with many such pairs obtained over many episodes, the network will learn to output a good estimate of the future reward that can be expected starting from the input state—in other words, the Value Function!

How to Train a Value Network

- Training loss: $L(s_t) = (D(s_t, a_t) V(s_t))^2$, where V is the Value Network
- Does this look familiar?
- This is exactly the "advantage" term in our gradient update!

$$-\sum_{t=1}^{T} \nabla \log p(a_t|s_t) \left(\frac{D(s_t, a_t) - V(s_t)}{D(s_t, a_t)} \right)$$

- In other words: training the value network == minimizing the advantage
 - Which is exactly what we want in order to lower the variance!
- The $V(s_t)$ term in the gradient update is also called a "baseline," which gives this algorithm the name **REINFORCE with Baseline (RwB)**

REINFORCE: Pseudo Code

Initialize policy net weights θ

Repeat until done (converge, time limit expired, etc.):

Run N episodes of environment simulation, each for *T* timesteps

For each episode

For t = 1 to t = T

 $\theta \leftarrow \theta + \text{OptimizerStep}(\nabla \log p(a_t | s_t) D(s_t, a_t))$

Return θ

RwB: Pseudo Code

Initialize policy net **and** value net weights θ

Repeat until done (converge, time limit expired, etc.):

Run N episodes of environment simulation, each for T timesteps

For each episode

For t = 1 to t = T $L_{actor} = -\log p(a_t | s_t)(D(s_t, a_t) - V(s_t))$ $L_{critic} = (D(s_t, a_t) - V(s_t))^2$ $\theta \leftarrow \theta + \text{OptimizerStep}(\nabla(L_{actor} + L_{critic}))$

RwB: Pseudo Code

Initialize policy net **and** value net weights θ

Repeat until done (converge, time limit expired, etc.):

Run N episodes of environment simulation, each for T timesteps

For each episode For t = 1 to t = T $L_{actor} = -\log p(a_t | s_t)(D(s_t, a_t) - V(s_t))$ $L_{critic} = (D(s_t, a_t) - V(s_t))^2$ $\theta \leftarrow \theta + \text{OptimizerStep}(\nabla(L_{actor} + L_{critic}))$

Return θ

Cart pole with Actor-Critic

The number of episodes needed to obtain maximum reward << than that for REINFORCE

https://medium.com/nerd-for-tech/policy-gradients-reinforce-with-baseline-6c871a3a068

High "sample complexity"

• Must play an entire episode to get gradient, takes many episodes to learn

...which will actually give us a solution for this problem via a simple extension

Dealing with Sample Complexity

Enabling more frequent gradient updates

- In REINFORCE, we have to wait until the end of an episode to make a gradient update
- That's because our gradient is $-\sum_{t=1}^{T} \nabla \log p(a_t|s_t) D(s_t, a_t)$
 - To calculate D(s_t, a_t), we need to know everything that happens up to the end of the episode
- You could cut the episode off early, but then D(s_t, a_t) would be biased
- What would happen if we did this while training on Frozen Lake?
 - The only nonzero reward comes on the very last step of the episode
 - If we cut the episode off early, we'd never see this reward, and the agent would never learn anything!

Enabling more frequent gradient updates

- RwB gives us a way to cut the episode off early (or pause it) and take a gradient update without introducing bias
- Recall the definition of $D(s_t, a_t)$:

$$D(s_t, a_t) = \sum_{i=t}^{T} \gamma^{i-1} r(s_i, a_i, s_{i+1})$$

• Write it as a recurrence relation:

$$D(s_T, a_T) = 0$$

$$D(s_t, a_t) = r(s_t, a_t, s_{t+1}) + \gamma D(s_{t+1}, a_{t+1})$$

Enabling more frequent gradient updates

 At any point, we can choose to stop expanding this recurrent relation and instead use our value network to estimate the remainder of D:

$$D(s_t, a_t) = r(s_t, a_t, s_{t+1}) + \gamma D(s_{t+1}, a_{t+1})$$
$$= r(s_t, a_t, s_{t+1}) + \gamma V(s_{t+1})$$

 Fun fact: this strategy is how AlphaGo trained itself to play Go without having to explore the (massive) search tree of a Go game: it could terminate the search early and use a trained value network to estimate the value of being in a particular board state

Reducing the number of episodes needed

- Simulating episodes can be very compute-intensive
- More intensive, in fact, than training the networks!
 - AlphaGo used 64 GPUs and 19 CPUs for its model updates...
 - ...but it used ~5,500 TPUs for its Go simulations to create training episodes
- Idea: get more out of the training episodes we've already simulated by periodically re-using them
 - Not a crazy idea: we iterate multiple epochs over the same training set in supervised learning, after all
- Known as Experience Replay

Experience Replay can also stabilize training!

- Recall from way back at the beginning of the class: SGD assumes that the training data is IID (independent, identically distributed)
- Time steps taken from a simulated MDP episode are definitely *not* independent
 - $(s_0, a_0), (s_1, a_1), \dots, (s_n, a_n) \rightarrow$ successive time steps are highly correlated
- By training on this data, agent could overfit to patterns in one episode, then have to un-learn when presented with a different episode
- Experience replay mixes up timesteps from past/present episodes, making the data "more IID"
 Any questions?
 - Think of it like the agent 'teleporting' around to different timesteps of different episodes during training

Experience Replay: Caveat

• As the agent gets better over time, episodes from earlier in training become less valuable (even useless)

• Why?

- Those mostly explore bad parts of the state space from when the agent was flailing around randomly
- Now it knows not to go to those states anymore, so why bother learning what to do in them?

Experience Replay: Caveat

• Solution: only keep a limited-size buffer of episodes

• Train on randomly-sampled timesteps from these episodes, for some number of training steps

Experience Replay: Caveat

• Solution: only keep a limited-size buffer of episodes

- Train on randomly-sampled timesteps from these episodes, for some number of training steps
- Then, sample a new episode, add to the buffer, and remove the oldest episode in the buffer
 - i.e. the buffer is a **queue**

Organizing RL problems/algorithms

For a more complete taxonomy of RL algorithms, see <u>https://spinningup.openai.com/e</u> <u>n/latest/spinningup/rl_intro2.htm</u> <u>l#citations-below</u>