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Review: Policy Network for Cart Pole
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Policy Gradient:



Review: REINFORCE: Pseudo Code

•  
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Your favorite optimizer (SGD, Adam, ...)



Reinforce vs DQN

Pros

• Policy often easier to learn than Q function

• Automates explore vs. exploit tradeoff
• Policy network starts off random and gradually 

becomes better as it is trained for more and 
more episodes

• Can learn stochastic policies
• More naturalistic behavior

• In practice, can converge faster than DQN

Cons

• Finds local optima more 
often than DQN...

• Unstable training

• Gradient updates only at 
end of each game (DQN 
updates after every step)
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We’ll see how to fix these two 
issues in the next lecture...



Issues with REINFORCE

• High Variance
• Multiple runs of training an

agent with REINFORCE can
yield very different results

• Susceptible to local optima

• High “sample complexity”
• Must play an entire episode to get gradient, takes many episodes to learn
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All 
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First, going to address this problem...

...which will actually give us a solution for this problem via a simple extension



The Solution:
Looking at Policy 
Gradient 
through a 
different “lens”
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Simple/discrete

Complex/continuous

Value iteration
 

Q-Learning
 

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy 
of RL algorithms, see 
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.htm
l#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below


The “Actor Critic” Framework

•  
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The “Actor Critic” Framework

•  
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Actor:
Specifies how to (probabilistically) 
choose actions for a given state



The “Actor Critic” Framework

•  
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Actor:
Specifies how to (probabilistically) 
choose actions for a given state

 

The trick to solving our problems:
Coming up with a better critic function...



The Problem: High Variance
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• To understand why this happens, have to dig into the math a little bit
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Random 
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High Variance
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•  

mean

Low Variance

mean

High Variance



High Variance in REINFORCE
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•  

Out of the two terms, 
which is more likely 

produce high variance?



High Variance Rewards: Frozen Lake

•  • S    F    F    F
F    H   F    H
F    F    F    H
H   F    F    G
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Very Low Reward

Very High Reward



High Variance Rewards: VizDoom

15https://www.youtube.com/watch?v=93TrfMZ2Dqs

https://www.oreilly.com/ideas/reinforcement-learning-with-tensorflow

This thick line is the average reward as a function of training time
(averaged over multiple training runs)

The shaded region is the variance...

https://www.youtube.com/watch?v=93TrfMZ2Dqs
https://www.oreilly.com/ideas/reinforcement-learning-with-tensorflow


High Variance in REINFORCE
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•  



High Variance in REINFORCE
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•  



Solving High Variance: A Better Critic

•  
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• Consider these two states in Cart Pole
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A B

Stable-ish, but starting to go bad Hopeless...



 

• What would be the Q value of taking the 🡨 action in either state?
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A B

Stable-ish, but starting to go bad Hopeless...

  

 



 

• Now consider the A value of taking the 🡨 action in either state:

21

A B

Stable-ish, but starting to go bad Hopeless...

  

 

 

What will be the A values 
for situation A and B 

(conceptually)?



The Advantage of Using Advantage 

•  
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This Photo by Unknown Author is licensed under CC BY-NC

http://www.newgrounds.com/art/view/psibat/happy-face
https://creativecommons.org/licenses/by-nc/3.0/


Using Advantage in REINFORCE

•  

23 

Are we done?



Value Networks

•  
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How to Train a Value Network

•  
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How to Train a Value Network

•  
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Any questions?



REINFORCE: Pseudo Code

•  
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Modify the code to RL w/ 
baseline



RwB: Pseudo Code

•  
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RwB: Pseudo Code

•  
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In practice, batch episodes and/or 
timesteps rather than looping over them



Cart pole with Actor-Critic 

https://medium.com/nerd-for-tech/policy-gradients-reinforce-with-baseline-6c871a3a068

The number of episodes needed to obtain  maximum reward << than that for REINFORCE



Issues with REINFORCE

• High Variance
• Multiple runs of training an

agent with REINFORCE can
yield very different results

• Susceptible to local optima

• High “sample complexity”
• Must play an entire episode to get gradient, takes many episodes to learn
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First, going to address this problem...

...which will actually give us a solution for this problem via a simple extension



Dealing with Sample Complexity
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Enabling more frequent gradient updates

•  
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Enabling more frequent gradient updates

•  
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Enabling more frequent gradient updates

•  
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Reducing the number of episodes needed

• Simulating episodes can be very compute-intensive

• More intensive, in fact, than training the networks!
• AlphaGo used 64 GPUs and 19 CPUs for its model updates...
• ...but it used ~5,500 TPUs for its Go simulations to create training episodes

• Idea: get more out of the training episodes we’ve already simulated by 
periodically re-using them

• Not a crazy idea: we iterate multiple epochs over the same training set in supervised 
learning, after all

• Known as Experience Replay
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https://en.wikipedia.org/wiki/Tensor_processing_unit


Experience Replay can also stabilize training!

•  
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Any questions?



Experience Replay: Caveat

• As the agent gets better over time, episodes from earlier in training 
become less valuable (even useless)

•Why?
• Those mostly explore bad parts of the state space from when the agent was 

flailing around randomly
• Now it knows not to go to those states anymore, so why bother learning what 

to do in them?
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Experience Replay: Caveat

• Solution: only keep a limited-size buffer of episodes

• Train on randomly-sampled timesteps from these episodes, for some 
number of training steps
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Ep 1 Ep 2 Ep 3 Ep 500...



Experience Replay: Caveat

• Solution: only keep a limited-size buffer of episodes

• Train on randomly-sampled timesteps from these episodes, for some 
number of training steps

• Then, sample a new episode, add to the buffer, and remove the oldest 
episode in the buffer

• i.e. the buffer is a queue
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Ep 1 Ep 2 Ep 3 Ep 500... Ep 501



Issues with REINFORCE

• High Variance
• Multiple runs of training an

agent with REINFORCE can
yield very different results

• Susceptible to local optima

• High “sample complexity”
• Must play an entire episode to get gradient, takes many episodes to learn
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First, going to address this problem...

...which will actually give us a solution for this problem via a simple extension
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Simple/discrete

Complex/continuous

Value iteration
 

Q-Learning
 

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy 
of RL algorithms, see 
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.htm
l#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below



