Homework 1 and Quiz 1

out today!

CSCl 1470/2470
Spring 2023

Ritambhara Singh

February 01, 2023
Wednesday

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”



https://openai.com/dall-e-2/

Recap

MNIST Data

output

Perceptron

Representing
handwritten digits

Handwritten digit
prediction task

Machine learning
pipeline

Biological motivation

Perceptron equation

Perceptron parameters
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Today’s goal — Continue discussion on
perceptron and learn about the loss
functions

(1) Perceptron learning algorithm
(2) Extending perceptron for Multi-class classification
(3) Loss functions for

- Regression
- Classification



Recap: A Binary Perceptron for MNIST

o * Inputs|xq, x5, ... X, ] are all positive
e n =784 (28X%X28 pixel values)
* outputis eitherOor 1

* 0 =2 input is not the digit type
we’re looking for

output

* 1 =2 input s the digit type we’re
looking for




Tra | N i ng d perce pt fron 0. set the parameters ® = {wUb}to 0

1. Iterate over training set several
N is known as the number of epochs, where each epoch is an t|me§, _ o
iteration of going through all data points in the training set Target: Y feedlr;]g n eZCT training example
———— into the model,

producing an output,

aining Labels and adjusting the parameters
according to whether that output
was right or wron
/ N\ & &
f (“model”) \
OUtpUL Loss function

2. Stop once we either
(a) get every training
example right or

(b) after N iterations, a
K Erro number set by the
Optimizer

r programmer.




The Perceptron Learning Algorithm

‘l. setw’stoO.

2. for N iterations, or until the weights do not change:
a) for each training example x* with label y*
i ifyk— f(xk) = 0 continue
ii. else for all weights w;, Aw; = (yk — f(xk)) xk

e b = bias  yk = label for the kt"example

« w; = weight for the i® input wherei < n

* n = number of pixels per image

« x¥ =i"input of the example where i <n

* w = weights
N = maximum number of training iterations

« x¥ = k™ training example



The Perceptron Learning Algorithm

‘]. setw’stoO.

2. for N iterations, or until the weights do not change:
a) for each training example x* with label y*
i. if y*— f(x¥) = 0 continue
ii. else for all weights w;, Aw; = (yk — f(xk)) xk

« |If the output of our model matches the label, we continue
« |fthe correct labelis 1,and our outputis1,1—-1=0
« |fthe correct label is 0, and our outputis0,0—0 =10



The Perceptron Learning Algorithm

‘]. setw’stoO.

2. for N iterations, or until the weights do not change:
a) for each training example x* with label y*
i ifyR — f(xk) = 0 continue
ii. else for all weights w;, Aw; = (yk - f(xk)) xk

« If our label y* is a 1, and our model’s output is a 0, we update the it" weight by:
(1-0) xk=xF
Output was 0 and should have been 1, so make the output more positive

» If our label y* is a 0, and our model’s output is a 1, we update the it" weight by:
(0—1) xk=—xF
Output was 1 and should have been 0, so make the output more negative



Example: Predict whether a digit
isa “2”



Predict whether a digit is a “2”

Just look at the effect of these
two pixels




Predict whether a digit is a “2”

*o Start off trainin%with all parameters as 0, sow; =
=0

0,w, =0, and True label =1

fx)=(Ww; x;+w, x,+b.1)
f(x)=(0-:-08+4+0:-04+0-1)=0

* Return 0 because value is not greater than 0
Predict that it is not a 2!

Correct answer: itis a 2...

Parameter update:
s Aw;=(1-0)-08=0.8
« Aw,=(1-0):-0=0
« Ab=(1-0)-1=1

* W = 0.8 xl —_ 0.8
® W2=0 xz —_



Predict whether a digit is a “2”

* Next example:

Remember the starting
weights are now:




Predict whether a digit is a “2”

* At end of last iteration:
®
« w;=08w,=0andb=1 True label =0

e f(x)=(Wy-x1+wy-x3+b.1)

X1

* f(x)=(08:-09+0-09+1-1)>0

* Return 1 because value is greater than 0
* Predict thatitis a 2!
* Correct answer: itis nota 2...
* Parameter update:

s Aw; =(0-1)-09=-09

« Aw,=(0-1)-09=-09

« Ab=(0-1)-1=-1

* Now
e w,=08-09=-01
c w,=0-09=-09 xl — 09
« b=1-1=0
Xy = 0.9



Multi-class problem



Bringing back the complexity

Input: X

Pixel
Gri

@D =

28x28 pixels

@ =

Classifying MINIST digits requires
predicting 1 of 10 possible values

Target: Y

m) Function: f ™

Rather than predicting
whether a handwritten digit
is of a certain class, we
predict the class it is most
likely in

Which digit is it?

y(]_) — uzn

I How do we do that?

y(Z) — uOn



Using multiple perceptrons

e » \We can extend perceptrons to multi-class problems by creating m perceptrons,
where m= the number of classes

e For MNIST, we would have 10 perceptrons

* Each individual perceptron returns a value, so our model will return the class
whose perceptron value is the highest.

* Here, “perceptron value” refers to the value of the weighted sum before being
thresholded.
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Using multiple perceptrons

Perceptron for predicting
whether handwritten digitisa 0

Perceptron for predicting
whether handwritten digit is a 9
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Multi-class Perceptron

Three separate perceptrons

——output,

Is there anything the Perceptron can’t learn?

Three perceptrons sharing inputs
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AND Function

Perceptrons work well with
linearly separable data

x2

AND Function

1.2

1 @

0.8

0.6

0.4

0.2

x1

0.8

1.2

AND AB

o

- O O O|CE
—~

AND Gate

@® Output
=)

Linear decision
boundary
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OR Function

x2

1.2

1

o8

0.6

0.4

0.2

OR Function
0.2 0.4 0.6
x1

08

1.2

OR Gate

@® Output

® oltput
= 1
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AN
VD AN\D

XO R F u n Ct | O n Complicated data would need a complicated function!

0O 0
0
1
1

1 1
0 1
1 0

XOR Gate

XOR Function

. @ Output

s 3 ® oltput
=1

o @ ®

x1

Need two linear decision boundaries to represent this function...

21



Multi-Layered Neural Net

May see the term

- \\\\.////i:\

»‘v’ S
7% SO
NRE7 TN = X

Multi-Layer
Perceptron (MLP),
HOWEVER K7

"perceptrons" are
not perceptrons in
the strictest possible
sense

RN RNBNAL K
/‘f"’é KN ' N A
NEAXSK

We really don’t use
the threshold
function of a
perceptron but still
use the linear
function

XN ' SIS
//"\\'%\&'/ Any gquestions?
V/m\ 7?9

‘ .
A Multi-Layered Neural Net >



How do we train multi-layer networks?

e Unfortunately, the perceptron algorithm doesn’t generalize beyond
the one-layer case... (X

* We need a new algorithm...

—
.

set w'sto 0.

2. For N iterations, or until the weights do not change:
a) Ffor each training example x* with label a*
i. ifa¥ — f(x¥) = 0 continue

ii. else forall weights w;, Aw; = (a" —f(x")) X;

one-layer binary
perceptron

23



A critical ingredient for our new approach:
Loss functions

Training Training
Data Labels
f (fmodel”) OutPut  Loss Function

Oﬁ
\ Optimizer AX



A critical ingredient for our new approach:
Loss functions

Output .
P » Loss function




What is a Loss Function?

« A function L which measures how “wrong” a network is

L is computed by comparing two values (predicted and true) that
shows which is better

* Evaluate L and update parameters to decrease L, making the network
“less wrong”

26



Recap — regression task

Input: X

x@ =100.1
2) —
X € R x2) =60.0
x®3) =303

(Image only for explaining concept, not drawn accurately)

ﬂ-l- “Temperature”

I Regression
ms) Function: f >
| FX)Y |

Target: Y

“Profit made on selling

lemonade”

y@ =200.0

y(2) =160.5

y3) =145.1

Ye R

(Numerical output)

L



Recap: Learning function f

What could be our loss Target: Y
Input: X function? — - o
4 “Temperature’ ;ﬂ:éﬁ?e on selling ST
ﬂ Linear function ' 8
x® =100.1 y=wx+b y@® =200.0
(W, yM)
(2) | TTE L@ 2
. ,
xer *X?=600 UHW .o 60.5
3) —
x(3) =303 y(® =145.1
Y € R

Temperature (X) (Numerical output)

(Image only for explaining concept, not drawn accurately)



Mean Squared Error (MSE)

Average squared residual (residual: difference between predicted and true value)

Decreasing the MSE = the model has less error = data points fall closer to the regression line

;cl=1(yk - }f;k)z
n

MSE =

y¥: true output value _
and predicted values

y*: predicted output value

_-//,
//l’ MSE is the average squared
T distance between the observed
/”/]/

n:number of samples

What could be the
purpose of squaring the
distance?

Courtesy: https://statisticsbyjim.com/regression/mean-squared-error-mse/



Mean Squared Error (MSE)

Average squared residual (residual: difference between predicted and true value)

Decreasing the MSE = the model has less error = data points fall closer to the regression line

;cl=1(yk - }’;k)z 400 -
n

MSE =

350 A

300 A

y¥: true output value ol

yk: predicted output value e |
n:number of samples 150
100 A
50 A
What could be the B T |
purpose of squaring the -20 -15 -10 -5 0 5
distance?

Courtesy: https://statisticsbyjim.com/regression/mean-squared-error-mse/



Recap: Binary classification

What is a good loss for _
our binary classification? Target: Y

Input: X

We want our network to
Pixel produce the right answer

: o
Gri with high probability Which digit is it

=) Function:f ™= y 1) = «2”

@D =

28x28 pixels 1. Make the network output
probabilities

(a value between 0 and 1
when predicting a class)

y(Z) uOn

x(2) _ 2. Use these probabilities to compute a loss




Cross Entropy Loss (for Binary classification)

When the true label is 1

y = true label of class (0 or 1) we want higher predicted
p = predicted probability of class 1 probability for a digit to
be 2

When the true label is 0

log (1) we wan’F !ower preglpted

probability for a digit to
be 2

Some examples:
log (0.9) =-0.04
log (0.5) = -0.3
log (0.001) = -3



Cross Entropy Loss (for Binary classification)

y = true label of class (0 or 1)
p = predicted probability of class 1

w

—log (p)

-log(p(x))

0.0 0.2 0.4 0.6
p(x)

Some examples:

log (0.9) =-0.04
log (0.5) = -0.3
log (0.001) = -3



Cross Entropy Loss (for Binary classification)

y = true label of class (0 or 1)
p = predicted probability of class 1

—(y log (p))

Some examples:
log (0.9) =-0.04
log (0.5) = -0.3
log (0.001) = -3



Cross Entropy Loss (for Binary classification)

y = true label of class (0 or 1)
p = predicted probability of class 1

y=1,p=0.9
—(ylog (p) + (1 — y)log(1 —p))

y=0,p=0.9

y=1,p=0.001
Some examples:
log (0.9) =-0.04 We get this y=0,p=0.001
log (0.5) = -0.3 probability by using /

a Sigmoid function

log (0.001) = -3



Cross Entropy Loss (for Multi-class classification)

m Classes
- Z yj log(p;) P (m)
j=1
0.3 “0” 0
0.2 “1” 0
0.5 IIZ” 1
We want model to assign
Some examples: Any questions? high probability to the

true class and low to
others

We can get these
probabilities by
using a Softmax

function

log (0.9) = -0.04
log (0.5) = —0.3
log (0.001) = -3




-log(p(x))

F=Y

w

N

(=

o

o
o

©
N

Recap

e
'S

p(x)

0.6

0.8

Perceptron

1.0

Loss function

Perceptron training w/ working
example

Multi-class classification I

When perceptron
fails

MSE loss for regression |

Cross entropy loss for binary
classification

Cross entropy loss for
multi-class classification

output



Some Trivia: The Fall of Perceptrons

*In 1969, Marvin Minsky and Seymour Papert released a book,
Perceptrons, demonstrating that perceptrons are not able to learn the
XOR function

* Many earlier researchers heavily focused on logical reasoning, a
feature of high-level human cognition, so a machine’s ability for
logical reasoning was thought to indicate “artificial intelligence”

* Part of a funding battle: Minksy and Papert wanted federal Al funding
to go to their kind of ‘symbolic’ Al, not the early neural net folks...



