BROWN IGNITECS

Are you interested in CS education? Do you want to work with students in K-12?

Join us at our kickoff meeting to learn more about IgniteCS and enjoy pizza!

KICKOFF MEETING ON 2/3 5PM-6PM AT CIT 101

Join our Slack!

If the QR code doesn't work you can email us at ignitecs@brown.edu CSCI 1470/2470 Spring 2023

Ritambhara Singh

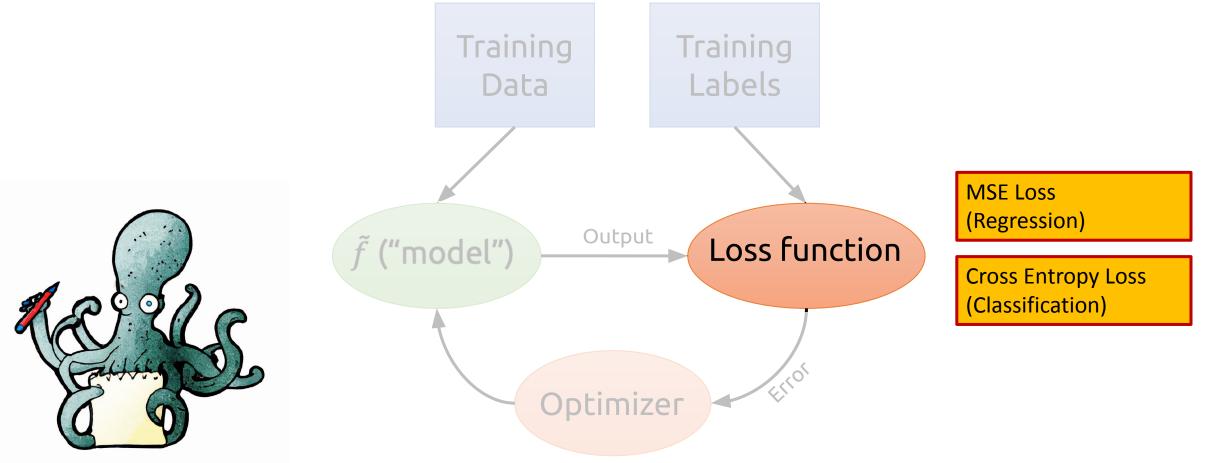
February 03, 2023 Friday

Deep Learning

DALL-E 2 prompt "a painting of deep underwater with a yellow submarine in the bottom right corner"

Recap: A critical ingredient for our new approach: Loss functions

A function L which measures how "wrong" a network is



Empirical Risk Minimization Framework

Given, X and Y

We want to learn, $f : \mathbb{X} \to \mathbb{Y}$ –

often called hypothesis (h) existing in a hypothesis space \mathcal{H}

So that we get an accurate output, $y \in \mathbb{Y}$, given $x \in \mathbb{X}$

This is unknown

To learn *f*, we collect training set of *n* samples, $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^n, y^n)$

More formally, we assume

 $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^n, y^n)$ are drawn i.i.d from P(X, Y)

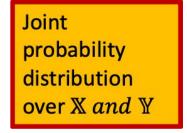
We are given a non-negative real-valued loss function, L(f(x), y)**RISK** associated with hypothesis f:

 $\mathbf{R}(\mathbf{f}) = \mathbb{E}_{(x,y) \sim P(\mathbb{X},\mathbb{Y})}[L(f(x),y)] = \int L(f(x),y)dP(x,y)$

What is our ultimate goal?

$$f^* = argmin_{f \in \mathcal{H}} R(f)$$

* i.i.d = Independent and identically distributed random variables



We get an **approximation** using the collected *n* samples

Empirical Risk Minimization Framework

Given, X and Y

We want to learn, $f : X \rightarrow Y$ —

often called hypothesis (h) existing in a hypothesis space \mathcal{H}

So that we get an accurate output, $y \in \mathbb{Y}$, given $x \in \mathbb{X}$

To learn *f*, we collect training set of *n* samples, $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^n, y^n)$

More formally, we assume

 $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^n, y^n)$ are drawn i.i.d from P(X, Y)

We are given a non-negative real-valued loss function, L(f(x), y)

EMPIRICAL RISK associated with hypothesis f:

 $R_{emp}(\mathbf{f}) = \frac{1}{n} \sum_{k=1}^{n} L(f(x^k), y^k)$

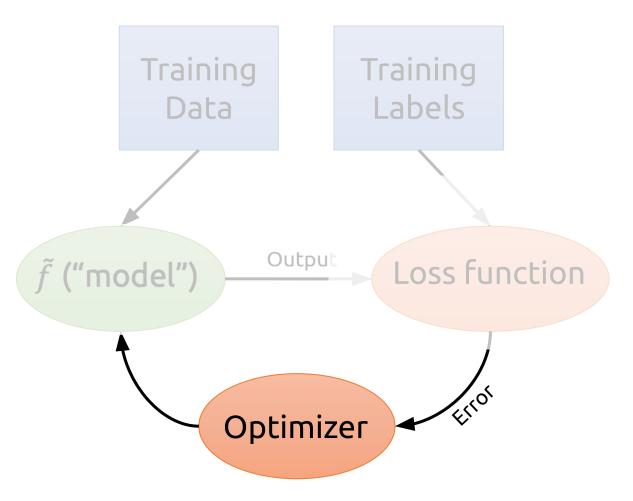
We get an **approximation** using the collected *n* samples

What is our ultimate goal?

 $f^* = argmin_{f \in \mathcal{H}} R_{emp}(f)$

* i.i.d = Independent and identically distributed random variables

Next critical ingredient for our new approach: **Optimizer**



Today's goal – learn about the optimizer

(1) What does it mean to optimize?

(2) Gradient descent for linear regression

(3) Start building a neural network

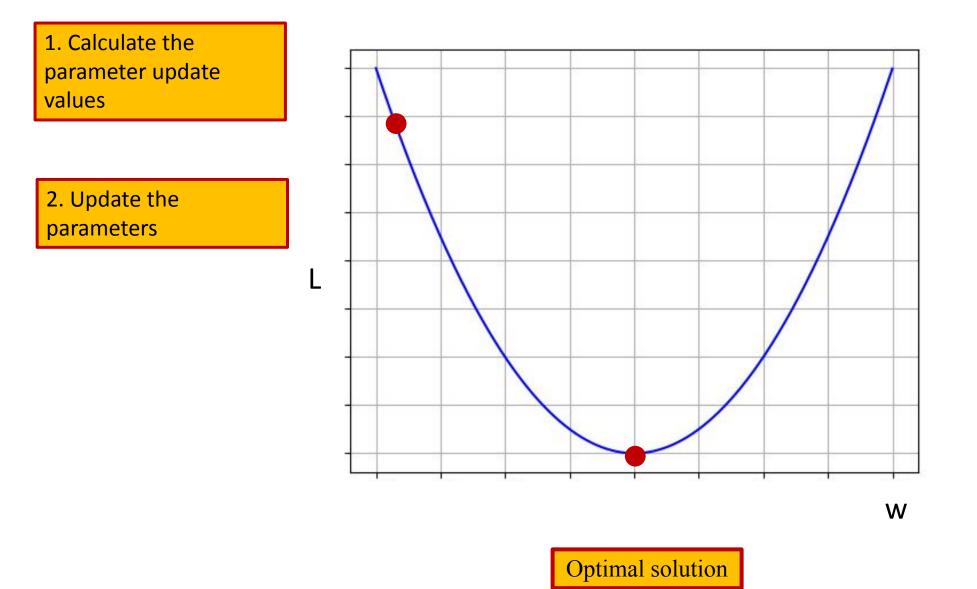
(4) Calculating gradients for composite functions (Chain rule)

What does it mean to optimize?

"Optimization" comes from the same root as "optimal", which means *best*. When you optimize something, you are "making it best".

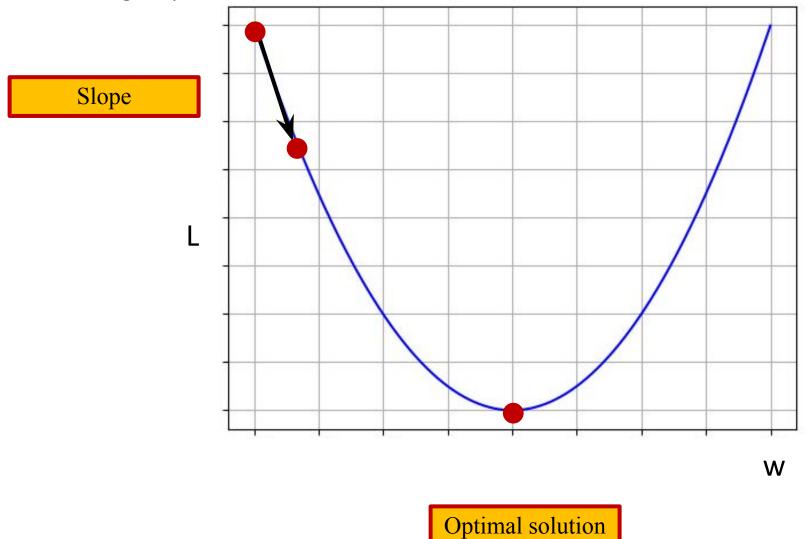
For our case, we want to minimize the loss function to get the "best" model!

What does it mean to optimize?



Gradient (measuring the change)

Calculating partial derivative of the Loss with respect to the weights/parameters



 Partial derivative: the derivative of a multivariable function with respect to one of its variables

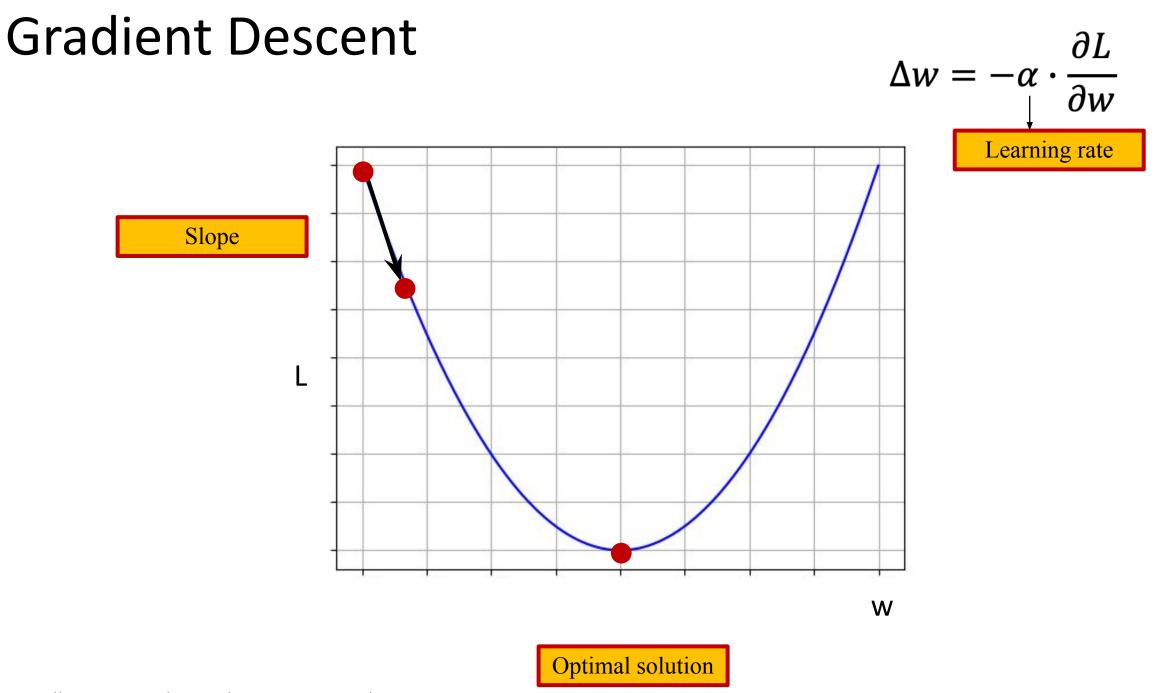
- Partial derivative: the derivative of a multivariable function with respect to one of its variables
- Example: f(x, w, b) = wx + b
- The partial derivative of f with respect to w is $\frac{\partial f}{\partial w}$

- Partial derivative: the derivative of a multivariable function with respect to one of its variables
- Example: f(x, w, b) = wx + b
- The partial derivative of f with respect to w is $\frac{\partial f}{\partial w}$
- How to compute? -- treat all other variables as constants and differentiate

$$\frac{\partial f}{\partial w} =$$

- Partial derivative: the derivative of a multivariable function with respect to one of its variables
- Example: f(x, w, b) = wx + b
- The partial derivative of f with respect to w is $\frac{\partial f}{\partial w}$
- How to compute? -- treat all other variables as constants and differentiate

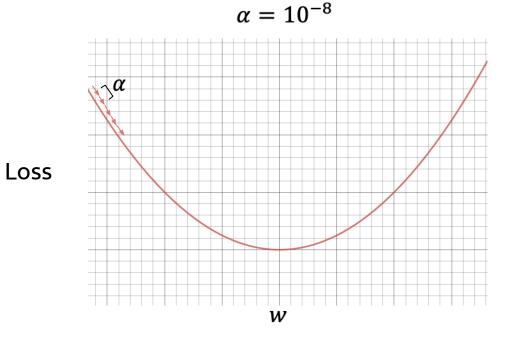
$$\frac{\partial f}{\partial w} = \frac{\partial}{\partial w}(wx + b) = \frac{\partial}{\partial x}(wx) + \frac{\partial}{\partial x}(b) = x + 0 = x$$



Impact of Learning Rate

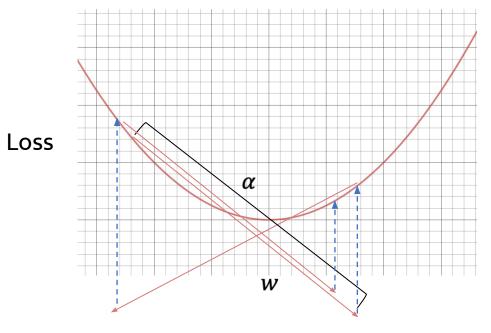
$$\Delta w = -\alpha \cdot \frac{\partial L}{\partial w}$$

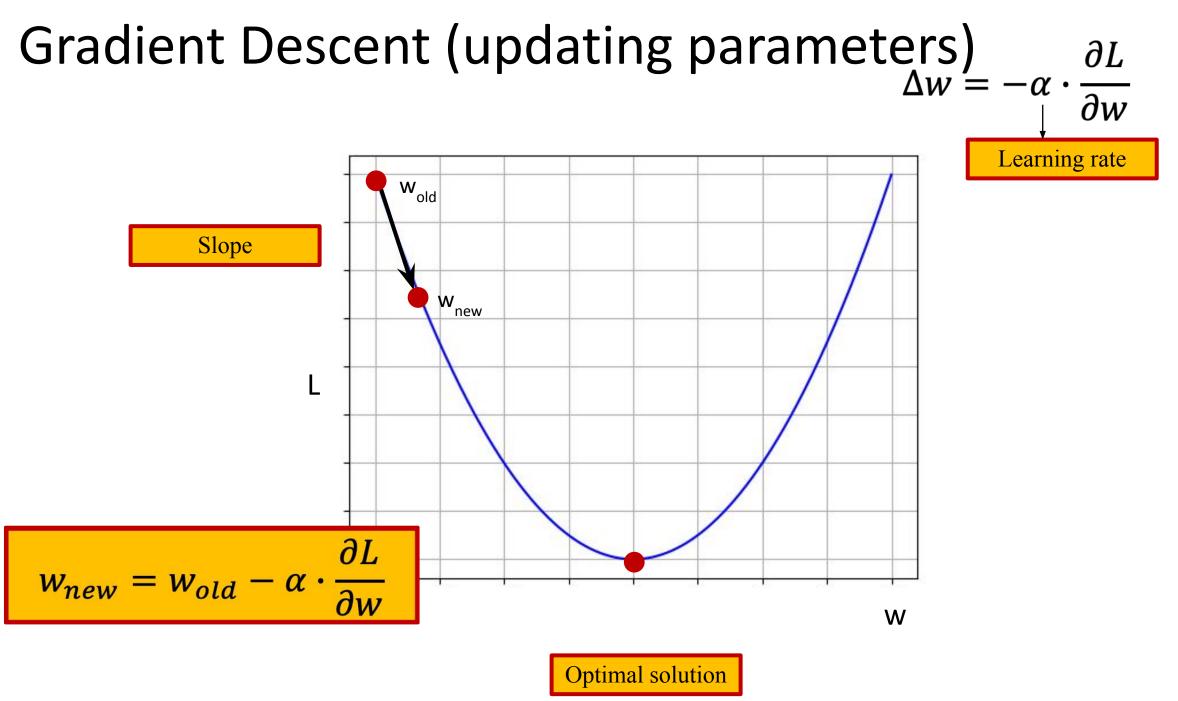
Learning rate too small? **Slow Convergence**



Learning rate too big? Instability ("overshooting")

 $\alpha = 10^{-1}$





Recap: Mean Squared Error (MSE)

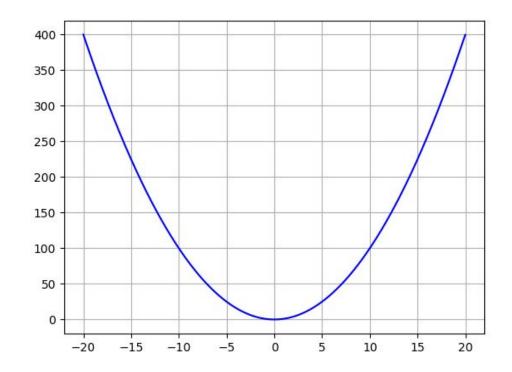
Average squared residual (residual: difference between predicted and true value)

Decreasing the MSE = the model has less error = data points fall closer to the regression line

$$MSE = \frac{\sum_{k=1}^{n} (y^k - \hat{y}^k)^2}{n}$$

y^k: true output value ŷ^k: predicted output value n:number of samples

What could be the purpose of squaring the distance?



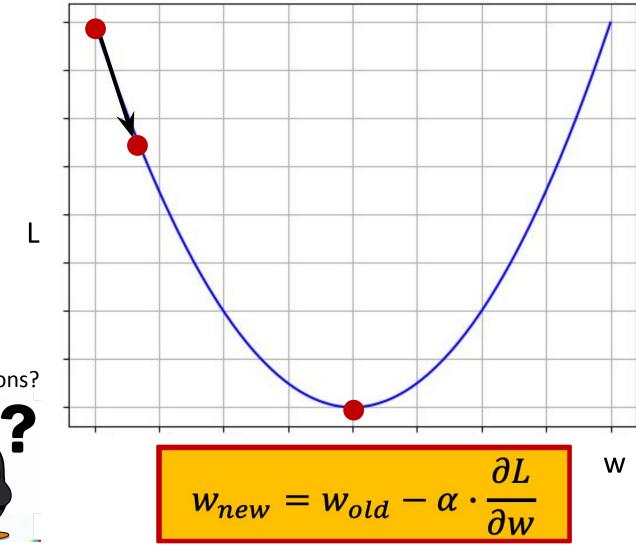
Gradient Descent of MSE (1 sample) $\Delta w = -\alpha \cdot \frac{\partial L}{\partial w}$ $L = (y - \hat{y})^{2}$

- $= (y f(x))^2$
- $= y^2 + f(x)^2 1$
- $= y^2 + (wx + b)^2 2y(wx + b)$

$$= y^2 + w^2 x^2 + b^2 + 2wxb - 2ywx - 2yb$$

$$\frac{\partial L}{\partial w} = ?$$

$$\frac{\partial L}{\partial w} = 2wx^{2} + 2xb - 2yx$$
Any question
$$\frac{\partial L}{\partial w} = 2x(wx + b - y)$$



Convex functions

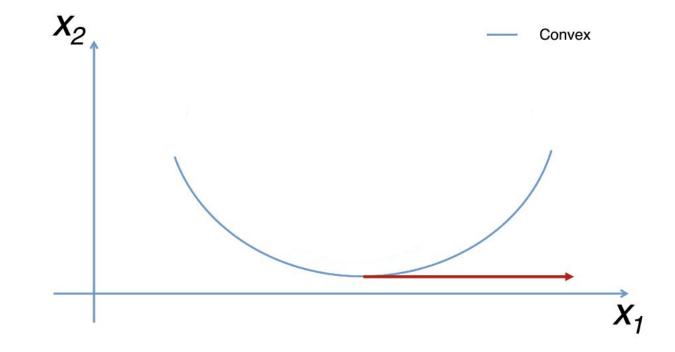


Figure: https://fmin.xyz/docs/theory/Convex_function/

Convex and Non convex functions

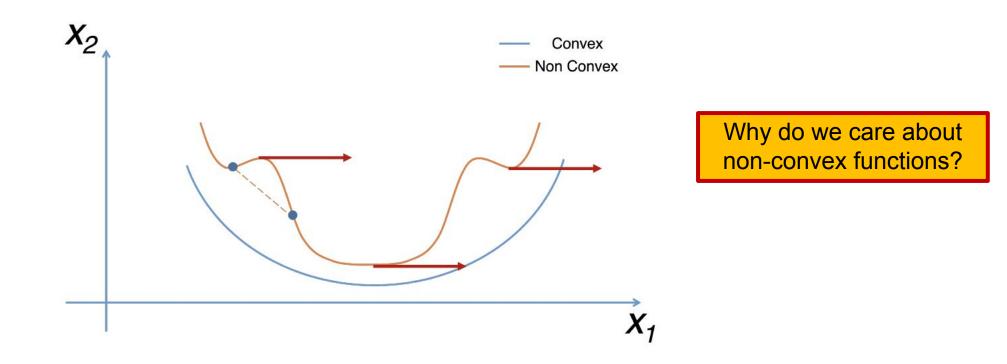
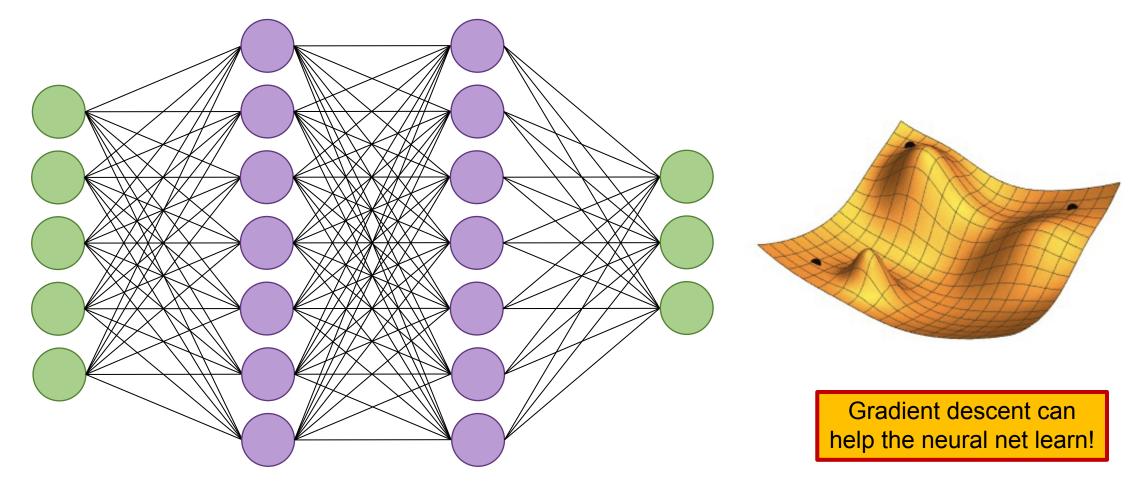


Figure: https://fmin.xyz/docs/theory/Convex_function/

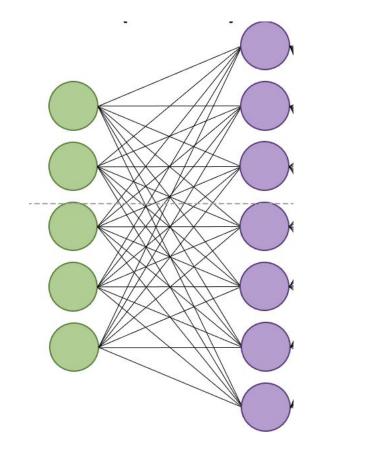
Why we care about non-convex functions?

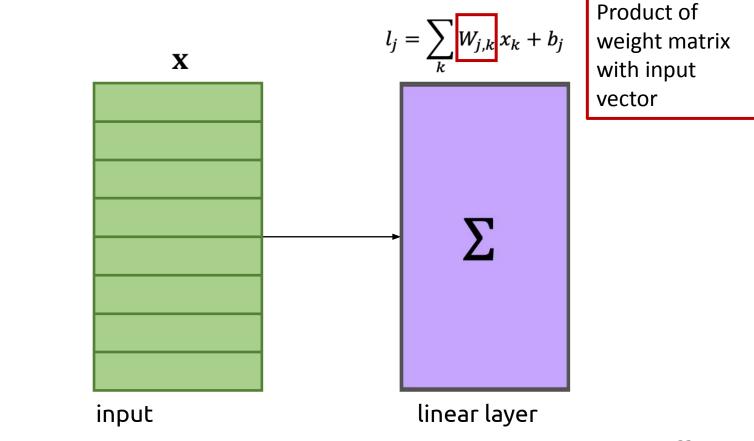


A Multi-Layered Neural Net

Let's start building our neural network model

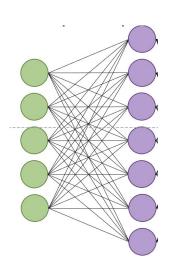
• This is a simplified view of our model with an input and a linear layer

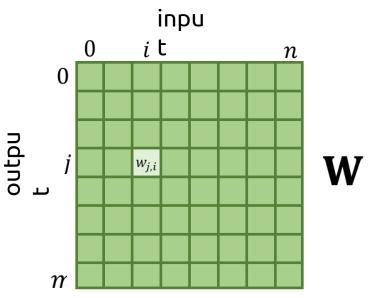




Our Weight Matrix

- We have an input vector of size n and an output vector of size m, so our weights matrix W is of dimensionality m×n
- w_{j,i} is the jth row and the ith column of our matrix, or the weight multiplied by the ith index of the input which is used to create the jth index in the output

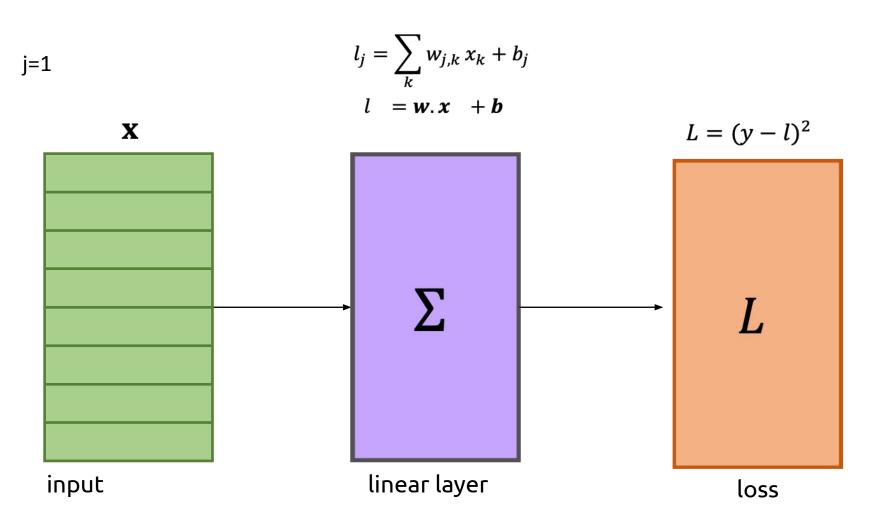




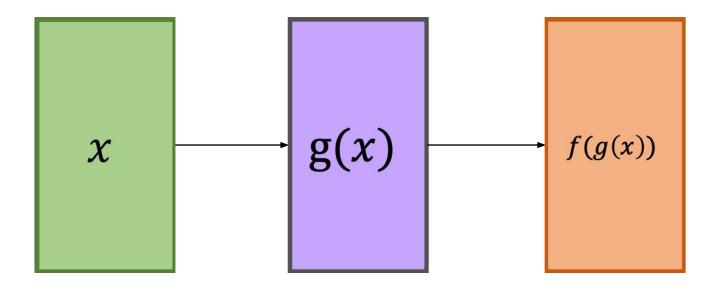
Our Weight Matrix [Example]

 $x = [x_1 \ x_2]$

Adding MSE Loss to Our Network



Looking at composite function!



Using gradient descent to update parameters

- Recall the parameter update for Gradient Descent: $\Delta w = -\alpha \cdot \frac{\partial L}{\partial w}$
- L is a composition of a series of functions (linear layers, loss layer, maybe more...)
- How do we compute the derivative of a composition of functions?
 - Hint: think back to your calculus classes...

Chain rule

If f and g are both differentiable and F(x) is the composite function defined by F(x) = f(g(x)) then F is differentiable and F' is given by the product

$$F'(x) = f'(g(x)) g'(x)$$
Differentiate
outer function
Differentiate
inner function

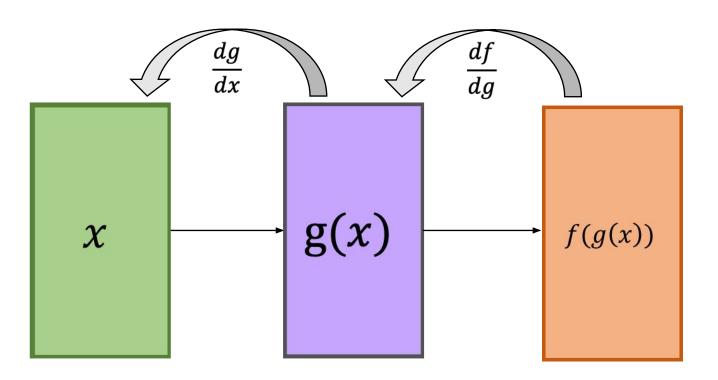
Applying Chain rule [Example]

$$f(x) = x^2$$
 $g(x) = (2x^2 + 1)$
 $F(x) = f(g(x))$

 $F(x) = (2x^2 + 1)^2$

The Chain Rule (for Differentiation)

• Given arbitrary function: $f(g(x)) \Rightarrow \frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

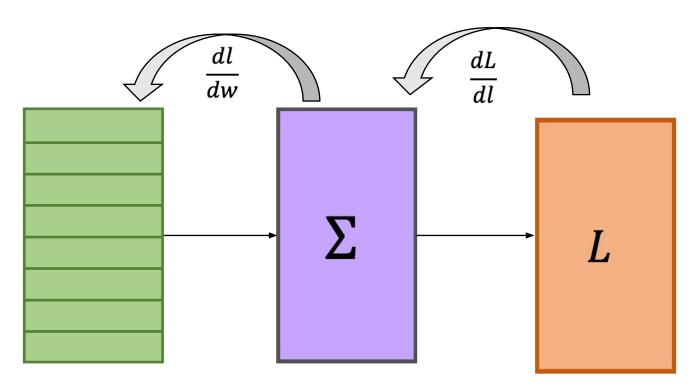


Each layer computes the gradients with respect to it's variables and passes the result backwards

Backpropagation (or backward pass)

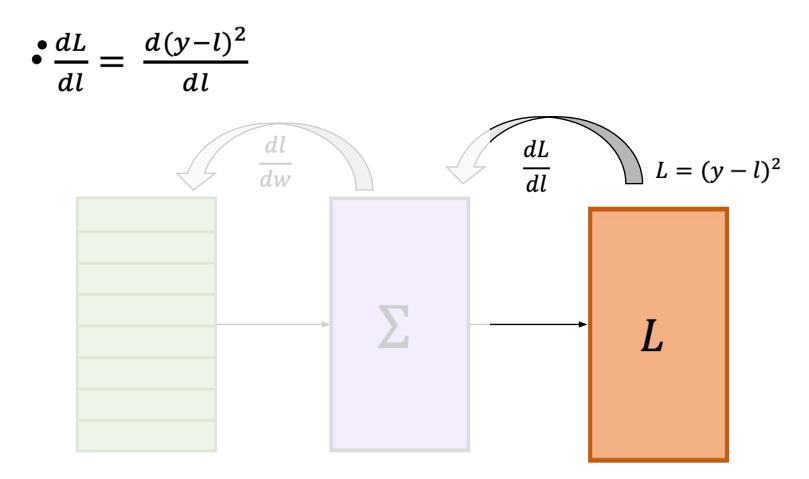
The Chain Rule in Our Network

• Here's our function: $L(l(w)) \Rightarrow \frac{dL}{dw} = \frac{dL}{dl} \cdot \frac{dl}{dw}$

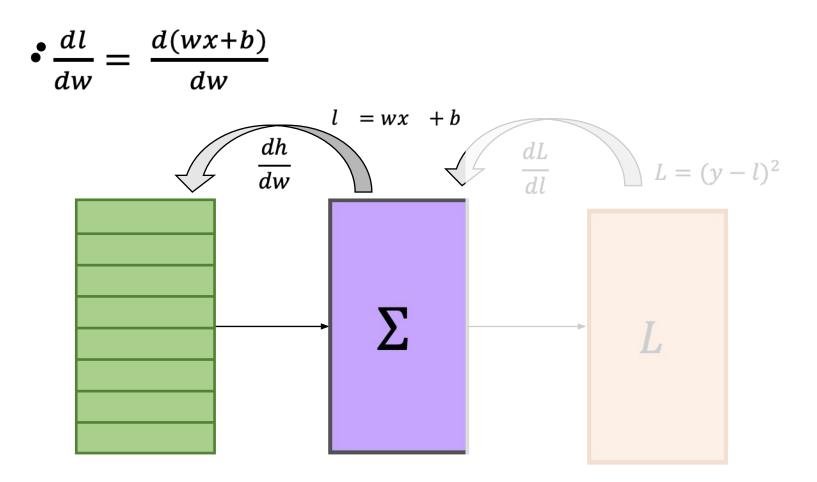


Remember – We calculate the gradient of L with respect to the parameters for learning them using gradient descent!

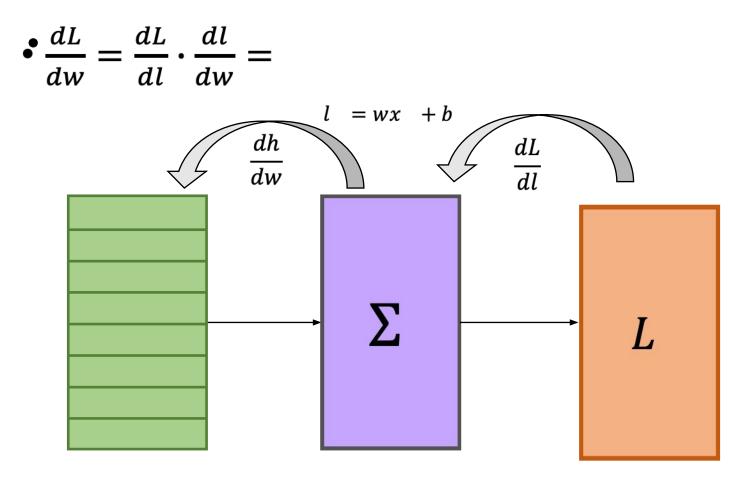
Derivative of loss layer



Derivative of linear layer

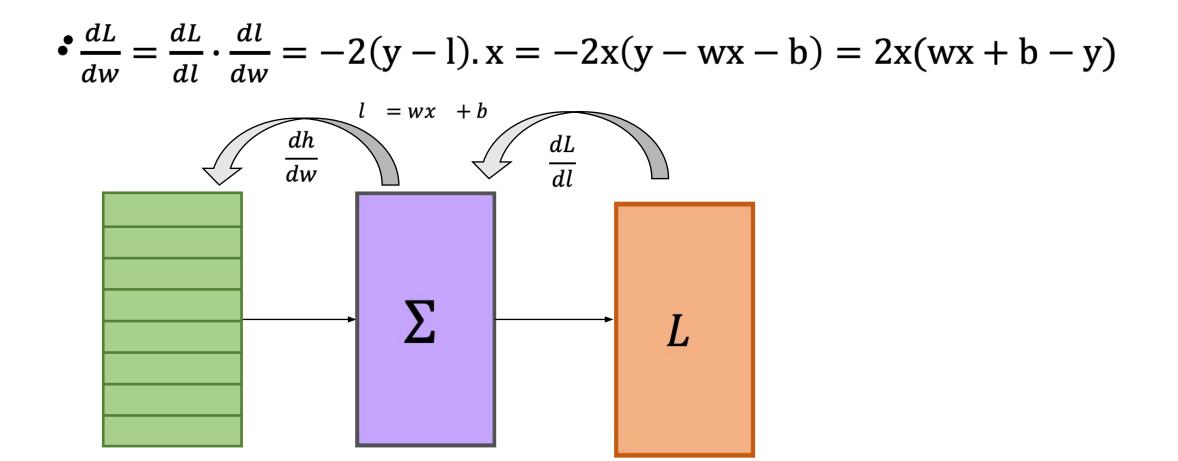


Putting it all together



Putting it all together

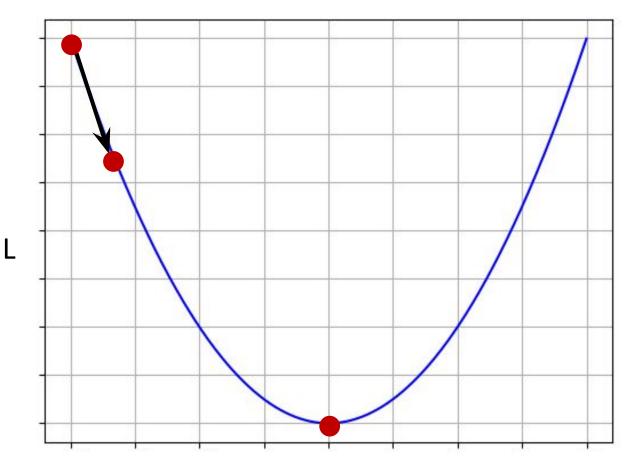
Have we seen this before?



Gradient Descent of MSE (1 sample) $\Delta w = -\alpha \cdot \frac{\partial L}{\partial w}$ $L = (y - \hat{y})^{\frac{1}{2}}$

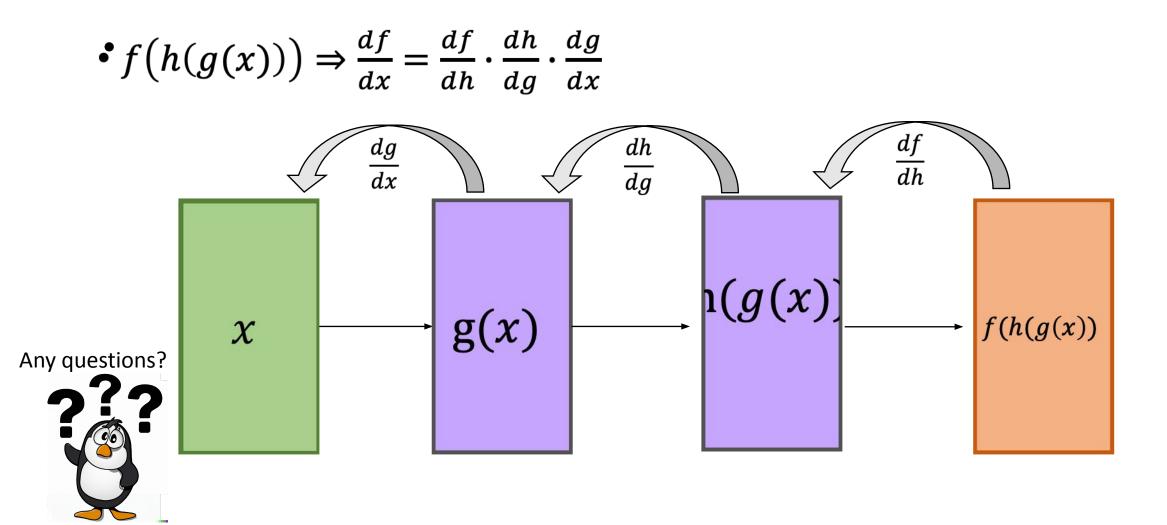
- $= (y f(x))^2$
- $= y^2 + f(x)^2 1$
- $= y^2 + (wx + b)^2 2y(wx + b)$
- $= y^{2} + (wx + b)^{2} 2y(wx + b)$ $= y^{2} + (wx + b)^{2} 2y(wx + b)$

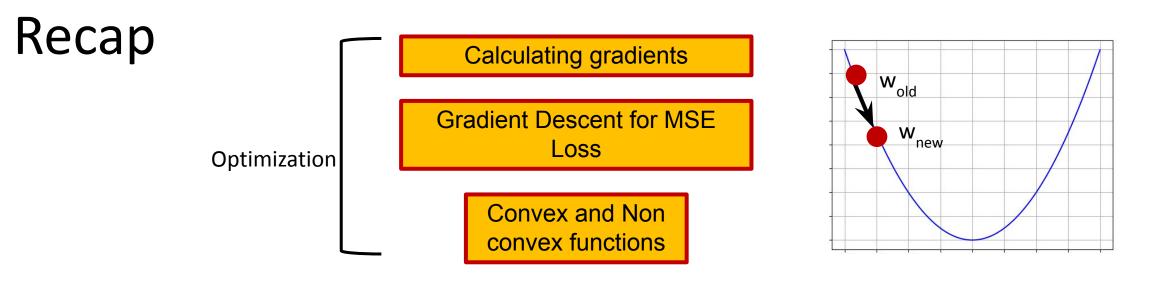
$$= y^{2} + w^{2}x^{2} + b^{2} + 2wxb - 2ywx - 2yb$$
$$\frac{\partial L}{\partial w} = 2wx^{2} + 2xb - 2yx$$
$$\frac{\partial L}{\partial w} = 2x(wx + b - y)$$

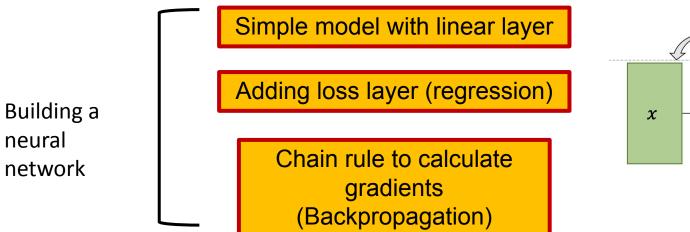


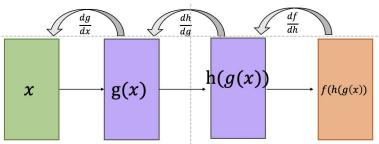
W

Adding more layers!









Few more important points: Backpropagation

- The process of calculating gradients of functions via chain rule in a neural network
- Is a part of and **NOT the whole learning algorithm**
- Can be calculated with respect to any variable of choice
- For learning in neural networks we calculate gradients with respect to the weights