BROWN IGNITECS

Are you interested in CS education? Do you want to work with students in K-12?

Join us at our kickoff meeting to learn more about IgniteCS and enjoy pizza!

KICKOFF MEETING ON 2/3
5PM-6PM AT CIT 101

Join our Slack!

If the QR code doesn't work you can email us at ignitecs@brown.edu
Deep Learning
Recap: A critical ingredient for our new approach: **Loss functions**

A function L which measures how “wrong” a network is
Empirical Risk Minimization Framework

Given, \mathbb{X} and \mathbb{Y}

We want to learn, $f : \mathbb{X} \to \mathbb{Y}$

So that we get an accurate output, $y \in \mathbb{Y}$, given $x \in \mathbb{X}$

often called hypothesis (h) existing in a hypothesis space \mathcal{H}

To learn f, we collect training set of n samples, $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}) \ldots (x^n, y^n)$

More formally, we assume

$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}) \ldots (x^n, y^n)$ are drawn i.i.d from $P(X, Y)$

We are given a non-negative real-valued loss function, $L(f(x), y)$

RISK associated with hypothesis f:

$$ R(f) = \mathbb{E}_{(x,y) \sim P(X,Y)}[L(f(x), y)] = \int L(f(x), y) dP(x, y) $$

Joint probability distribution over \mathbb{X} and \mathbb{Y}

What is our ultimate goal?

$$ f^* = \text{argmin}_{f \in \mathcal{H}} R(f) $$

We get an approximation using the collected n samples

* i.i.d = Independent and identically distributed random variables
Empirical Risk Minimization Framework

Given, \mathbf{X} and \mathbf{Y}

We want to learn, $f : \mathbf{X} \to \mathbf{Y}$

So that we get an accurate output, $y \in \mathbf{Y}$, given $x \in \mathbf{X}$

often called hypothesis (h) existing in a hypothesis space \mathcal{H}

To learn f, we collect training set of n samples, $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}) \ldots (x^{n}, y^{n})$

More formally, we assume

$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}) \ldots (x^{n}, y^{n})$ are drawn i.i.d from $P(\mathbf{X}, \mathbf{Y})$

We are given a non-negative real-valued loss function, $L(f(x), y)$

EMPIRICAL RISK associated with hypothesis f:

$$R_{emp}(f) = \frac{1}{n} \sum_{k=1}^{n} L(f(x^k), y^k)$$

We get an approximation using the collected n samples

What is our ultimate goal?

$$f^* = \arg \min_{f \in \mathcal{H}} R_{emp}(f)$$

* i.i.d = Independent and identically distributed random variables
Next critical ingredient for our new approach: Optimizer
Today’s goal – learn about the optimizer

(1) What does it mean to optimize?

(2) Gradient descent for linear regression

(3) Start building a neural network

(4) Calculating gradients for composite functions (Chain rule)
What does it mean to optimize?

“Optimization” comes from the same root as “optimal”, which means best. When you optimize something, you are “making it best”.

For our case, we want to minimize the loss function to get the “best” model!
What does it mean to optimize?

1. Calculate the parameter update values

2. Update the parameters

Optimal solution
Gradient (measuring the change)

Calculating partial derivative of the Loss with respect to the weights/parameters

Slope

Optimal solution

Courtesy: https://statisticsbyjim.com/regression/mean-squared-error-mse/
Vector Calculus Recap

- Partial derivative: the derivative of a multivariable function with respect to one of its variables
Vector Calculus Recap

• Partial derivative: the derivative of a multivariable function with respect to one of its variables

 • Example: $f(x, w, b) = wx + b$

 • The partial derivative of f with respect to w is $\frac{\partial f}{\partial w}$
Vector Calculus Recap

- Partial derivative: the derivative of a **multivariable function** with respect to one of its variables
- Example: \(f(x, w, b) = wx + b \)
- The partial derivative of \(f \) with respect to \(w \) is \(\frac{\partial f}{\partial w} \)
- How to compute? -- treat all other variables as constants and differentiate

\[
\frac{\partial f}{\partial w} =
\]
Vector Calculus Recap

• Partial derivative: the derivative of a multivariable function with respect to one of its variables
• Example: \(f(x, w, b) = wx + b \)
• The partial derivative of \(f \) with respect to \(w \) is \(\frac{\partial f}{\partial w} \)
• How to compute? -- treat all other variables as constants and differentiate

\[
\frac{\partial f}{\partial w} = \frac{\partial}{\partial w} (wx + b) = \frac{\partial}{\partial x} (wx) + \frac{\partial}{\partial x} (b) = x + 0 = x
\]
Gradient Descent

\[\Delta w = -\alpha \cdot \frac{\partial L}{\partial w} \]

Slope

Optimal solution

Learning rate

Courtesy: https://statisticsbyjim.com/regression/mean-squared-error-mse/
Impact of Learning Rate

Learning rate too small?
Slow Convergence

\[\alpha = 10^{-8} \]

Learning rate too big?
Instability ("overshooting")

\[\alpha = 10^{-1} \]

\[\Delta w = -\alpha \cdot \frac{\partial L}{\partial w} \]
Gradient Descent (updating parameters)

\[\Delta w = -\alpha \cdot \frac{\partial L}{\partial w} \]

\[w_{\text{new}} = w_{\text{old}} - \alpha \cdot \frac{\partial L}{\partial w} \]

Learning rate
Slope
Optimal solution

Courtesy: https://statisticsbyjim.com/regression/mean-squared-error-mse/
Recap: Mean Squared Error (MSE)

Average squared residual (residual: difference between predicted and true value)

Decreasing the MSE = the model has less error = data points fall closer to the regression line

\[
MSE = \frac{\sum_{k=1}^{n}(y^k - \hat{y}^k)^2}{n}
\]

- \(y^k \): true output value
- \(\hat{y}^k \): predicted output value
- \(n \): number of samples

What could be the purpose of squaring the distance?
Gradient Descent of MSE (1 sample)

\[L = (y - \hat{y})^2 \]

\[= (y - f(x))^2 \]

\[= y^2 + f(x)^2 - 2yf(x) \]

\[= y^2 + (wx + b)^2 - 2y(wx + b) \]

\[= y^2 + w^2x^2 + b^2 + 2wxb - 2ywx - 2yb \]

\[\frac{\partial L}{\partial w} =? \]

\[\frac{\partial L}{\partial w} = 2wx^2 + 2xb - 2yx \]

\[\frac{\partial L}{\partial w} = 2x(wx + b - y) \]

\[w_{new} = w_{old} - \alpha \cdot \frac{\partial L}{\partial w} \]
Convex functions

Figure: https://fmin.xyz/docs/theory/Convex_function/
Convex and Non convex functions

Why do we care about non-convex functions?

Figure: https://fmin.xyz/docs/theory/Convex_function/
Why we care about non-convex functions?

A Multi-Layered Neural Net

Gradient descent can help the neural net learn!
Let’s start building our neural network model

• This is a simplified view of our model with an input and a linear layer

\[l_j = \sum_k W_{j,k} x_k + b_j \]

Product of weight matrix with input vector
Our Weight Matrix

- We have an input vector of size n and an output vector of size m, so our weights matrix W is of dimensionality $m \times n$
- $w_{j,i}$ is the j^{th} row and the i^{th} column of our matrix, or the weight multiplied by the i^{th} index of the input which is used to create the j^{th} index in the output
Our Weight Matrix [Example]

\[x = [x_1 \ x_2] \]
Adding MSE Loss to Our Network

\[l_j = \sum_k w_{j,k} x_k + b_j \]

\[l = w \cdot x + b \]

\[L = (y - l)^2 \]
Looking at composite function!
Using gradient descent to update parameters

• Recall the parameter update for Gradient Descent: \(\Delta w = -\alpha \cdot \frac{\partial L}{\partial w} \)

• \(L \) is a composition of a series of functions (linear layers, loss layer, maybe more...)

• How do we compute the derivative of a composition of functions?
 • Hint: think back to your calculus classes...
Chain rule

If f and g are both differentiable and $F(x)$ is the composite function defined by $F(x) = f(g(x))$ then F is differentiable and F' is given by the product

$$F'(x) = f'(g(x)) \cdot g'(x)$$

- Differentiate outer function
- Differentiate inner function
Applying Chain rule [Example]

\[f(x) = x^2 \quad \text{g}(x) = (2x^2 + 1) \]

\[F(x) = f(g(x)) \]

\[F(x) = (2x^2 + 1)^2 \]
The Chain Rule (for Differentiation)

- Given arbitrary function: \(f(g(x)) \Rightarrow \frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx} \)

Each layer computes the gradients with respect to its variables and passes the result backwards

Backpropagation
(or backward pass)
The Chain Rule in Our Network

• Here’s our function: \(L(l(w)) \) \(\Rightarrow \frac{dL}{dw} = \frac{dL}{dl} \cdot \frac{dl}{dw} \)

Remember – We calculate the gradient of L with respect to the parameters for learning them using gradient descent!
Derivative of loss layer

\[\frac{dL}{dl} = \frac{d(y-l)^2}{dl} \]
Derivative of linear layer

\[\frac{dl}{dw} = \frac{d(wx+b)}{dw} \]

\[l = wx + b \]

\[\frac{dL}{dl} = (y - l)^2 \]
Putting it all together

\[\frac{dL}{dw} = \frac{dL}{dl} \cdot \frac{dl}{dw} = \]

\[l = wx + b \]
Putting it all together

\[\frac{dL}{dw} = \frac{dL}{dl} \cdot \frac{dl}{dw} = -2(y - 1).x = -2x(y - wx - b) = 2x(wx + b - y) \]
Gradient Descent of MSE (1 sample)

\[L = (y - \hat{y})^2 \]

\[= (y - f(x))^2 \]

\[= y^2 + f(x)^2 - 2yf(x) \]

\[= y^2 + (wx + b)^2 - 2y(wx + b) \]

\[= y^2 + (wx + b)^2 - 2y(wx + b) \]

\[= y^2 + (wx + b)^2 - 2y(wx + b) \]

\[= y^2 + w^2x^2 + b^2 + 2wxb - 2yw - 2yb \]

\[\frac{\partial L}{\partial w} = 2wx^2 + 2xb - 2yx \]

\[\frac{\partial L}{\partial w} = 2x(wx + b - y) \]

\[\Delta w = -\alpha \cdot \frac{\partial L}{\partial w} \]
Adding more layers!

\[f(h(g(x))) \Rightarrow \frac{df}{dx} = \frac{df}{dh} \cdot \frac{dh}{dg} \cdot \frac{dg}{dx} \]
Recap

Optimization

- Calculating gradients
- Gradient Descent for MSE
- Convex and Non convex functions

Building a neural network

- Simple model with linear layer
- Adding loss layer (regression)
- Chain rule to calculate gradients (Backpropagation)
Few more important points: Backpropagation

- The process of calculating gradients of functions via chain rule in a neural network
- Is a part of and **NOT the whole learning algorithm**
- Can be calculated with respect to any variable of choice
- For **learning in neural networks** we calculate gradients with respect to the weights