
Deep Learning
CSCI 1470/2470

Spring 2023

Ritambhara Singh

February 10, 2023

Friday

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”

Sign up for SRC session and 
get an open AI account for 
upcoming SRC assignment

https://openai.com/dall-e-2/


Today’s goal – learn about role of matrices 
and introduction to Tensorflow framework

(1) How matrix operations make learning efficient

(2) Batching and broadcasting 
(It’s all about matching dimensions in matrix operations!)

(3) Intro to Tensorflow



Recap: Simple Neural net (w/ linear unit)
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Matrix-multiplication Style Neural Net
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What are the 
dimensions?
(keeping bias 

separate)



•  
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Fully connected layer with multiple outputs

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

What are the 
dimensions?

 

 

 



•  
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Fully connected layer with multiple outputs
What are the 
dimensions?

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



Fully connected layer with multiple outputs

•  
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Gradient Updates using Matrices

•  
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10x784 matrix of weights  

Jacobian matrix: 
matrix of all first-order partial derivatives for a 
vector-valued function.



Why is matrix formulation 
useful?
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Remember 
the three 

loops in last 
lecture?



Existing linear algebra optimizations

•  
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From: https://www.coursera.org/lecture/neural-networks-deep-learning/vectorization-NYnog



GPUs to the rescue!

• Graphics Processing Units 

• GPUs are really good at computing mathematical operations in 
parallel!

• Matrix multiplication == many independent multiply and add 
operations

Easily parallelizable

GPUs are great for this!

Image courtesy: https://global.aorus.com/blog-detail.php?i=878



CPU v/s GPU

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

Arithmetic logic unit



CPU v/s GPU

https://dlsys.cs.washington.edu/pdf/lecture5.pdf



GPU-Parallel Acceleration

• User code (kernels) is compiled on the 
host (the CPU) and then transferred to the 
device (the GPU)

• Kernel is executed as a grid

• Each grid has multiple thread blocks

• Each thread block has multiple warps
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https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_Imaging_Using_GPUs

CUDA compute model

Compute Unified Device 
Architecture is a parallel 
computing platform and 
application programming 
interface (API)

A warp is the basic schedule unit in 
kernel execution

A warp consists of 32 threads



GPU-Parallel Acceleration

• Programmer decides how they want 
to parallelize the computation across 
grids and blocks

• Modern deep learning frameworks take 
care of this for you

• CUDA compiler figures out how to 
schedule these units of computation 
on to the physical hardware
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CUDA compute model

https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_Imaging_Using_GPUs



GPU-Parallel Acceleration

• Upshot: order of magnitude speedups!

• Example: training CNN on CIFAR-10 dataset 

From: 
https://medium.com/@andriylazorenko/tensorflow-performance-test-cp
u-vs-gpu-79fcd39170c
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CUDA compute model

https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_Imaging_Using_GPUs

Any questions?



Batching and broadcasting
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Computing a “batch” of outputs

• We can compute output of a single n x 1 input  by multiplying it by 
weight matrix

• What about a batch of
10 inputs?

18

1

* =

X (dims: n by 1)W (dims: m by n) output (dims: m by 1)

nm

n

m

1

10

* =

X (dims: n by 10)W (dims: m by n) output (dims: m by 10)

nm

n

m

10



From: https://github.com/moritzhambach/CPU-vs-GPU-benchmark-on-MNIST

Benefit of matrices in batching

• GPU can process a whole batch in parallel!

• In practice, we use the biggest batch size that will fit on our GPU (from last lecture)

• Example: Training duration of a CNN with GPU for different batch sizes
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Adding a term (e.g. bias)
•  
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Broadcasting
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• Actually not a problem because of broadcasting!

• Broadcasting: implicitly replicating a tensor along some dimension to 
make math operations possible.

• NumPy, Tensorflow, PyTorch will all broadcast for you.

• Example: (m, 10) + (1, 10) 🡺(m, 10) + m * (1, 10)

output (dims: m by 10) 

m

10

b (dims: m by 1)

          

10

m+

 



Broadcasting
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• Actually not a problem because of broadcasting!

• Broadcasting: implicitly replicating a tensor along some dimension to 
make math operations possible.

• NumPy, Tensorflow, PyTorch will all broadcast for you.

Broadcasting

 



Broadcasting
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Broadcasting
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• Actually not a problem because of broadcasting!

• Broadcasting: implicitly replicating a tensor along some dimension to 
make math operations possible.

• NumPy, Tensorflow, PyTorch will all broadcast for you.

Broadcasting

•  



Broadcasting in NumPy 

General Broadcasting Rules:
• When operating on two arrays, NumPy compares their shapes element-wise 

starting with the trailing dimensions.
• Two dimensions are compatible when

• they are equal, or
• one of them is 1

• Dimensions with size 1 are stretched or “copied” to match the other. The size 
of the resulting array is the maximum size along each dimension of the input 
arrays.

• Arrays do not need to have the same number of dimensions, as long as the 
trailing dimensions are compatible.
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Link to NumPy documentation: 
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.ht
ml 

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html


Broadcasting in NumPy
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• Example:
• (m, n) array + (n,) array works
• (m, n) array + (m,) array doesn’t 

work
• (m, n) array + (m, 1) array works

• Which of the following examples work?

A: (5, 3, 2) + (3, 2) 

B: (5, 3, 2) + (5, 2)
 
C: (5, 3, 2) + (5, 3) 

D: (5, 3, 2) + (5, 1, 2) 

E: (5, 3, 2) + (1, 3, 2)

F: (5, 3, 2) + (5, 3, 1)

G: (5, 3, 2) + ()

Tensor: multi-dimensional array



Broadcasting in NumPy
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• Example:
• (m, n) array + (n,) array works
• (m, n) array + (m,) array doesn’t 

work
• (m, n) array + (m, 1) array works

• Which of the following examples 
work?

A: (5, 3, 2) + (3, 2) = success!

B: (5, 3, 2) + (5, 2) = failure ☹
C: (5, 3, 2) + (5, 3) = failure ☹ 

D: (5, 3, 2) + (5, 1, 2) = success!

E: (5, 3, 2) + (1, 3, 2) = success!

F: (5, 3, 2) + (5, 3, 1) = success!

G: (5, 3, 2) + () = success!

Any questions?



Deep Learning Frameworks
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History of deep learning frameworks
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• Python

• Launched 2007 by researcher at 
MILA (Montreal Institute for 
Learning Algorithms)

• Essentially a GPU + symbolic 
differentiation backend for numpy

• Cryptic errors, poor performance for 
larger models

• No longer under active 
development

• Lua

• Launched 2002 by academic 
researchers (who later went on 
to work for Facebook and 
Twitter)

• Unified different ML algorithms 
into single framework

• Use of niche Lua language 
limited adoption to dedicated 
researchers

• No longer under active 
development

• C++ (w/ models defined via text 
config files)

• Launched 2013 by a PhD student 
at Berkeley

• Designed for vision models, very 
optimized.

• Difficult to declare models that 
are more complicated than a 
linear chain of layers

• Making custom layers requires 
writing C++ code...

• No longer under active 
development

Did my PhD project in 
2016 using this!!



History of deep learning frameworks
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• Python

• Launched 2007 by researcher at 
MILA (Montreal Institute for 
Learning Algorithms)

• Essentially a GPU + symbolic 
differentiation backend for numpy

• Cryptic errors, poor performance for 
larger models

• No longer under active 
development

• Lua

• Launched 2002 by academic 
researchers (who later went on 
to work for Facebook and 
Twitter)

• Unified different ML algorithms 
into single framework

• Use of niche Lua language 
limited adoption to dedicated 
researchers

• No longer under active 
development

• C++ (w/ models defined via text 
config files)

• Launched 2013 by a PhD student 
at Berkeley

• Designed for vision models, very 
optimized.

• Difficult to declare models that 
are more complicated than a 
linear chain of layers

• Making custom layers requires 
writing C++ code...

• No longer under active 
development

Notice a common theme?
What happened?



Current strong industrial players behind DL 
frameworks
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We’ll be using TensorFlow
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This choice isn’t hugely important

• Tensorflow and PyTorch have become increasingly similar in their 
designs, over the years

• They have about the same level of popularity

33
Today



TensorFlow Demo

Collab Notebook

https://drive.google.com/drive/folders/1pPnO6oVVP2N4RJIAxl69fGSS1sPbDRlO


Recap Neural networks as matrix 
operations

Batching and Broadcasting 

Intro to Tensorflow





Extra: GPU-Parallel Acceleration

• Multiple streaming 
multiprocessors (SMs)
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https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_Imaging_Using_GPUs

Architecture of a CUDA-capable GPU



Extra: GPU-Parallel Acceleration

• Multiple streaming 
multiprocessors (SMs)

• Each SM has multiple cores / 
streaming processors (SPs)
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https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_Imaging_Using_GPUs

Architecture of a CUDA-capable GPU



Extra: Programming model - SIMT

Single Instruction, Multiple Threads

All threads execute the same 
code, but can take different 
paths

Threads are grouped into a 
block

Threads within the same 
block can synchronize 
execution

Blocks are grouped into a grid

Blocks are independently 
scheduled on the GPU, can 
execute in any order

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

Programmer writes code for a single thread



A kernel is executed as a grid 
of blocks and threads

Extra: Programming model - SIMT

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

A warp is the basic schedule unit in 
kernel execution

A warp consists of 32 threads

A thread block consists of 
multiple warps.

Each cycle, a warp scheduler selects one
ready warps and dispatches the warps to
CUDA cores to execute


