
Deep Learning
CSCI 1470/2470

Spring 2023

Ritambhara Singh

February 10, 2023

Friday

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”

Sign up for SRC session and
get an open AI account for
upcoming SRC assignment

https://openai.com/dall-e-2/

Today’s goal – learn about role of matrices
and introduction to Tensorflow framework

(1) How matrix operations make learning efficient

(2) Batching and broadcasting
(It’s all about matching dimensions in matrix operations!)

(3) Intro to Tensorflow

Recap: Simple Neural net (w/ linear unit)

3

Matrix-multiplication Style Neural Net

4

What are the
dimensions?
(keeping bias

separate)

•

5

Fully connected layer with multiple outputs

What are the
dimensions?

•

6

Fully connected layer with multiple outputs
What are the
dimensions?

Fully connected layer with multiple outputs

•

7

* + =

1

n

m

n

1

m

m

1

Gradient Updates using Matrices

•

8

10x784 matrix of weights

Jacobian matrix:
matrix of all first-order partial derivatives for a
vector-valued function.

Why is matrix formulation
useful?

9

Remember
the three

loops in last
lecture?

Existing linear algebra optimizations

•

10

From: https://www.coursera.org/lecture/neural-networks-deep-learning/vectorization-NYnog

GPUs to the rescue!

• Graphics Processing Units

• GPUs are really good at computing mathematical operations in
parallel!

• Matrix multiplication == many independent multiply and add
operations

Easily parallelizable

GPUs are great for this!

Image courtesy: https://global.aorus.com/blog-detail.php?i=878

CPU v/s GPU

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

Arithmetic logic unit

CPU v/s GPU

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

GPU-Parallel Acceleration

• User code (kernels) is compiled on the
host (the CPU) and then transferred to the
device (the GPU)

• Kernel is executed as a grid

• Each grid has multiple thread blocks

• Each thread block has multiple warps

14
https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_Imaging_Using_GPUs

CUDA compute model

Compute Unified Device
Architecture is a parallel
computing platform and
application programming
interface (API)

A warp is the basic schedule unit in
kernel execution

A warp consists of 32 threads

GPU-Parallel Acceleration

• Programmer decides how they want
to parallelize the computation across
grids and blocks

• Modern deep learning frameworks take
care of this for you

• CUDA compiler figures out how to
schedule these units of computation
on to the physical hardware

15

CUDA compute model

https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_Imaging_Using_GPUs

GPU-Parallel Acceleration

• Upshot: order of magnitude speedups!

• Example: training CNN on CIFAR-10 dataset

From:
https://medium.com/@andriylazorenko/tensorflow-performance-test-cp
u-vs-gpu-79fcd39170c

16

CUDA compute model

https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_Imaging_Using_GPUs

Any questions?

Batching and broadcasting

17

Computing a “batch” of outputs

• We can compute output of a single n x 1 input by multiplying it by
weight matrix

• What about a batch of
10 inputs?

18

1

* =

X (dims: n by 1)W (dims: m by n) output (dims: m by 1)

nm

n

m

1

10

* =

X (dims: n by 10)W (dims: m by n) output (dims: m by 10)

nm

n

m

10

From: https://github.com/moritzhambach/CPU-vs-GPU-benchmark-on-MNIST

Benefit of matrices in batching

• GPU can process a whole batch in parallel!

• In practice, we use the biggest batch size that will fit on our GPU (from last lecture)

• Example: Training duration of a CNN with GPU for different batch sizes

19

Adding a term (e.g. bias)
•

20

10

* =

X (dims: n by 10)W (dims: m by n) output (dims: m by 10)

nm

n

m

10

output (dims: m by 10)

m

10

b (dims: m by 1)

1

m+ = ???

Broadcasting

21

• Actually not a problem because of broadcasting!

• Broadcasting: implicitly replicating a tensor along some dimension to
make math operations possible.

• NumPy, Tensorflow, PyTorch will all broadcast for you.

• Example: (m, 10) + (1, 10) 🡺(m, 10) + m * (1, 10)

output (dims: m by 10)

m

10

b (dims: m by 1)

10

m+

Broadcasting

22

• Actually not a problem because of broadcasting!

• Broadcasting: implicitly replicating a tensor along some dimension to
make math operations possible.

• NumPy, Tensorflow, PyTorch will all broadcast for you.

Broadcasting

Broadcasting

23

• Actually not a problem because of broadcasting!

• Broadcasting: implicitly replicating a tensor along some dimension to
make math operations possible.

• NumPy, Tensorflow, PyTorch will all broadcast for you.

Broadcasting

Broadcasting

24

• Actually not a problem because of broadcasting!

• Broadcasting: implicitly replicating a tensor along some dimension to
make math operations possible.

• NumPy, Tensorflow, PyTorch will all broadcast for you.

Broadcasting

•

Broadcasting in NumPy

General Broadcasting Rules:
• When operating on two arrays, NumPy compares their shapes element-wise

starting with the trailing dimensions.
• Two dimensions are compatible when

• they are equal, or
• one of them is 1

• Dimensions with size 1 are stretched or “copied” to match the other. The size
of the resulting array is the maximum size along each dimension of the input
arrays.

• Arrays do not need to have the same number of dimensions, as long as the
trailing dimensions are compatible.

25

Link to NumPy documentation:
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.ht
ml

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

Broadcasting in NumPy

26

• Example:
• (m, n) array + (n,) array works
• (m, n) array + (m,) array doesn’t

work
• (m, n) array + (m, 1) array works

• Which of the following examples work?

A: (5, 3, 2) + (3, 2)

B: (5, 3, 2) + (5, 2)

C: (5, 3, 2) + (5, 3)

D: (5, 3, 2) + (5, 1, 2)

E: (5, 3, 2) + (1, 3, 2)

F: (5, 3, 2) + (5, 3, 1)

G: (5, 3, 2) + ()

Tensor: multi-dimensional array

Broadcasting in NumPy

27

• Example:
• (m, n) array + (n,) array works
• (m, n) array + (m,) array doesn’t

work
• (m, n) array + (m, 1) array works

• Which of the following examples
work?

A: (5, 3, 2) + (3, 2) = success!

B: (5, 3, 2) + (5, 2) = failure ☹
C: (5, 3, 2) + (5, 3) = failure ☹

D: (5, 3, 2) + (5, 1, 2) = success!

E: (5, 3, 2) + (1, 3, 2) = success!

F: (5, 3, 2) + (5, 3, 1) = success!

G: (5, 3, 2) + () = success!

Any questions?

Deep Learning Frameworks

28

History of deep learning frameworks

29

• Python

• Launched 2007 by researcher at
MILA (Montreal Institute for
Learning Algorithms)

• Essentially a GPU + symbolic
differentiation backend for numpy

• Cryptic errors, poor performance for
larger models

• No longer under active
development

• Lua

• Launched 2002 by academic
researchers (who later went on
to work for Facebook and
Twitter)

• Unified different ML algorithms
into single framework

• Use of niche Lua language
limited adoption to dedicated
researchers

• No longer under active
development

• C++ (w/ models defined via text
config files)

• Launched 2013 by a PhD student
at Berkeley

• Designed for vision models, very
optimized.

• Difficult to declare models that
are more complicated than a
linear chain of layers

• Making custom layers requires
writing C++ code...

• No longer under active
development

Did my PhD project in
2016 using this!!

History of deep learning frameworks

30

• Python

• Launched 2007 by researcher at
MILA (Montreal Institute for
Learning Algorithms)

• Essentially a GPU + symbolic
differentiation backend for numpy

• Cryptic errors, poor performance for
larger models

• No longer under active
development

• Lua

• Launched 2002 by academic
researchers (who later went on
to work for Facebook and
Twitter)

• Unified different ML algorithms
into single framework

• Use of niche Lua language
limited adoption to dedicated
researchers

• No longer under active
development

• C++ (w/ models defined via text
config files)

• Launched 2013 by a PhD student
at Berkeley

• Designed for vision models, very
optimized.

• Difficult to declare models that
are more complicated than a
linear chain of layers

• Making custom layers requires
writing C++ code...

• No longer under active
development

Notice a common theme?
What happened?

Current strong industrial players behind DL
frameworks

31

We’ll be using TensorFlow

32

This choice isn’t hugely important

• Tensorflow and PyTorch have become increasingly similar in their
designs, over the years

• They have about the same level of popularity

33
Today

TensorFlow Demo

Collab Notebook

https://drive.google.com/drive/folders/1pPnO6oVVP2N4RJIAxl69fGSS1sPbDRlO

Recap Neural networks as matrix
operations

Batching and Broadcasting

Intro to Tensorflow

Extra: GPU-Parallel Acceleration

• Multiple streaming
multiprocessors (SMs)

37
https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_Imaging_Using_GPUs

Architecture of a CUDA-capable GPU

Extra: GPU-Parallel Acceleration

• Multiple streaming
multiprocessors (SMs)

• Each SM has multiple cores /
streaming processors (SPs)

38
https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_Imaging_Using_GPUs

Architecture of a CUDA-capable GPU

Extra: Programming model - SIMT

Single Instruction, Multiple Threads

All threads execute the same
code, but can take different
paths

Threads are grouped into a
block

Threads within the same
block can synchronize
execution

Blocks are grouped into a grid

Blocks are independently
scheduled on the GPU, can
execute in any order

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

Programmer writes code for a single thread

A kernel is executed as a grid
of blocks and threads

Extra: Programming model - SIMT

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

A warp is the basic schedule unit in
kernel execution

A warp consists of 32 threads

A thread block consists of
multiple warps.

Each cycle, a warp scheduler selects one
ready warps and dispatches the warps to
CUDA cores to execute

