Deep Learning

Ritambhara Singh

February 13, 2023
Monday

DALL-E 2 prompt “a painting of deep underwater with a yellow submarine in the bottom right corner”
Recap

Neural networks as matrix operations

Batching and Broadcasting

Intro to Tensorflow
Today’s goal – learn to build multi-layer neural networks

(1) Adding more layers to the network

(2) Introducing non-linearity (Activation functions)

(3) Multi-layer neural network with non-linearity
Single Layer Fully Connected Feed Forward Neural Network

This network can achieve ~90% accuracy on the MNIST test set.
How can we do better?

Go deeper!
Multi-layer Neural Networks

- Each new layer adds another function to the network
 - \(f\left(g(h(...z(x) ...))\right) \)
 - More composed functions \(\rightarrow \) can represent more complex computations

- Each new layer has its own tunable parameters
 - More parameters to tune \(\rightarrow \) can capture more complex patterns in the data
One Way to Make a Multi-layer Network

input \rightarrow \Sigma \rightarrow \Sigma \rightarrow \sigma \rightarrow \text{output}
One Way to Make a Multi-layer Network

Obvious idea: just stack more linear layers

Let’s examine the consequences of this design decision...
Single-Layer Network (in math)

\[\sigma \left(\left[w_2 \quad b_2 \right] \begin{bmatrix} x_1 \\ 1 \end{bmatrix} \right) \]
Multi-Layer Network (in math)

Let's simplify this a bit...

\[\sigma \left([w_2 \ b_2] \left([w_1 \ b_1] \left[x \atop 1 \right] \right) \right) \]
Simplifying multi-layer math...

$$\sigma \left([w_2 \ b_2] \left([w_1 \ b_1] [x_1] \right) \right)$$
Simplifying multi-layer math...

\[\sigma \left([w_2 \ b_2] \left([w_1 \ b_1] \left[\begin{array}{c} x \\ 1 \end{array} \right] \right) \right) \]

Apply associativity...

\[\sigma \left(([w_2 \ b_2] [w_1 \ b_1]) \left[\begin{array}{c} x \\ 1 \end{array} \right] \right) \]

Multiply the matrices...

\[\sigma \left([w_{12} \ b_{12}] \left[\begin{array}{c} x \\ 1 \end{array} \right] \right) \]
Simplifying multi-layer math...

\[
\sigma \left(\begin{bmatrix} w_2 & b_2 \end{bmatrix} \begin{bmatrix} w_1 & b_1 \end{bmatrix} \begin{bmatrix} x_1 \\ 1 \end{bmatrix} \right)
\]

Apply associativity...

\[
\sigma \left(\left(\begin{bmatrix} w_2 & b_2 \end{bmatrix} \begin{bmatrix} w_1 & b_1 \end{bmatrix} \right) \begin{bmatrix} x_1 \\ 1 \end{bmatrix} \right)
\]

Multiply the matrices...

\[
\sigma \left(\begin{bmatrix} w_{12} & b_{12} \end{bmatrix} \begin{bmatrix} x_1 \\ 1 \end{bmatrix} \right)
\]

Same as a one-layer network
Takeaway: Stacking Linear Layers Isn’t Enough

Combination of linear functions is another linear function.

Why is this a problem?
Linear functions may not be sufficient

• Root cause of our problem: a composition of linear functions is still linear
Incorporate non-linearity - Activation Functions

- Root cause of our problem: a composition of linear functions is still linear
- Need some kind of **nonlinear** function between each linear layer.
- Called an **activation function**
 - Origin of the name: a neuron “activates” if it gets enough electrochemical input
What is a good activation function?

• How about $a(x) = x^2$?

 • Linear \rightarrow Quadratic

 • Let’s examine the consequences of this design decision

 • In particular, let’s look at what happens to the gradient
Recall: Single-layer network gradient

- Let’s look at the partial derivative of logits $\frac{\sigma_{ij}}{\partial w_{j,i}}$
Recall: Single-layer network gradient

Let’s look at the partial derivative of logits $\frac{\partial l_j}{\partial w_{j,i}}$

Recall:

$$l_j = W_{j,0}x_0 + W_{j,1}x_1 + \cdots + W_{j,k}x_k + b_j$$

$$= \sum_k W_{j,k}x_k + b_j$$
Recall: Single-layer network gradient

Let’s look at the partial derivative of logits \(\frac{\sigma l_j}{\partial w_{j,i}} \)

Recall:

\[
l_j = W_{j,0}x_0 + W_{j,1}x_1 + \cdots + W_{j,k}x_k + b_j
\]

\[
= \sum_k W_{j,k} x_k + b_j
\]

So:

\[
\frac{\partial \sum_k W_{j,k} x_k + b_k}{\partial w_{j,i}} = x_i
\]
Now add our activation function

Let $a(l_j)$ or $a_j = (l_j)^2$

Our goal is to calculate $\frac{\partial a_j}{\partial w_{j,i}}$
Now add our activation function

- Remember the chain rule:

\[
\frac{\partial a_j}{\partial w_{j,i}} = \frac{\partial a_j}{\partial l_j} \cdot \frac{\partial l_j}{\partial w_{j,i}}
\]

- linear layer activation
Now add our activation function

\[
\frac{\partial a_j}{\partial w_{j,i}} = \frac{\partial a_j}{\partial l_j} \cdot \frac{\partial l_j}{\partial w_{j,i}}
\]

\[
\frac{\partial a_j}{\partial w_{j,i}} = \frac{\partial (l_j)^2}{\partial l_j} \cdot x_i
\]
Now add our activation function

\[
\frac{\partial a_j}{\partial w_{j,i}} = \frac{\partial a_j}{\partial l_j} \cdot \frac{\partial l_j}{\partial w_{j,i}}
\]

\[
\frac{\partial a_j}{\partial w_{j,i}} = \frac{\partial (l_j)^2}{\partial l_j} \cdot x_i
\]

\[
\frac{\partial a_j}{\partial w_{j,i}} = 2l \cdot x_i
\]
Uh oh, we have a problem...

- Previous Gradient
 \[\frac{\partial l_j}{\partial w_{j,i}} = x_i \]
- New Gradient
 \[\frac{\partial a_j}{\partial w_{j,i}} = 2l \cdot x_i \]

New gradient is, in general, **larger** in magnitude.
With more layers, gradient gets bigger and bigger...

Known as the **Exploding Gradient Problem**
Consequences of Exploding Gradients

Remember the update rule for SGD:

$$\Delta w_{j,i} = -\alpha \cdot \frac{\partial L}{\partial w_{j,i}}$$

So if our gradient gets really big, we need a very small learning rate α

$$a(x) = x^2 : \textbf{Not} \text{ a good activation function!}$$
HALP
The Sigmoid Activation Function

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]
The Sigmoid Activation Function

- Historically very popular activation function
- Takes real value and squashes it to range between 0 and 1
 - i.e. \(\sigma(x) : \mathbb{R} \rightarrow (0, 1) \)

\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]
The Sigmoid Activation Function

- Large negative numbers become 0 and large positive numbers become 1
- **Bounded**: guarantees gradient cannot grow without bound!!

\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]
Another “Sigmoidal” function: Tanh

\[\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]

The hyperbolic tangent function
Tanh

- Output range: \([-1,1]\)
 - Versus sigmoid \([0,1]\)
- Somewhat desirable property of keeping the signal that passes through the network “centered” around zero.

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Do you see any issues with these functions? (Think about the gradients!)
But we’re still not out of the woods...

• The bounded-ness of these functions is a double-edged sword
 • Why? Being bounded means that the function has asymptotes, which have zero derivative in the limit.

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]
But we’re still not out of the woods...

• So, our derivatives don’t grow out of control...
• ...but the price we pay is that they approach zero, and **the network stops learning**
• Known as the **Vanishing Gradient Problem**
Consequences of Vanishing Gradients

• Problem is exacerbated by stacking multiple layers (gradients shrink more the deeper you go)
• Led to the belief that in practice, neural nets could only ever be a few layers deep...

Any questions?
Enter the **Rectifier Function**

- Nonlinear — cannot be represented as: \(a(x) + b \)

\[
f(x) = \begin{cases}
 x, & x > 0 \\
 0, & \text{else}
\end{cases}
\]
More commonly known as ReLU

• **Rectified Linear Unit**
 - Technically: Linear layer followed by the rectifier function
 - But in most contexts, you will see the rectifier function called “ReLU”
Advantages of ReLU

• Does not suffer from vanishing or exploding gradients!
• Super computationally efficient (avoids the exp calls in sigmoid/tanh)
• Most popular, de-facto ‘standard’ activation function

\[
ReLU(x) = \max(0, x)
\]

\[
f(x) = \begin{cases}
 x, & x > 0 \\
 0, & \text{else}
\end{cases}
\]
But not even ReLU is perfect...

• We said that the zero-derivative asymptotes of sigmoid were a problem...

Do we see any issues here?

\[f(x) = \begin{cases}
 x, & x > 0 \\
 0, & \text{else}
\end{cases} \]
But not even ReLU is perfect...

- We said that the zero-derivative asymptotes of sigmoid were a problem...
- Check out this huge zero-derivative region
- Effectively: layers that feed into this activation don’t learn anything if they feed negative values

\[f(x) = \begin{cases}
 x, & x > 0 \\
 0, & \text{else}
\end{cases} \]
But not even ReLU is perfect...

• Not such a big deal if the previous layer just occasionally produces negative values
 • Some people even claim this as a “feature,” in that the resulting ‘sparse activations’ in the network more closely resemble what the human brain does
• But what if the previous layer *always* produces negative values?
• Is this even possible?
But not even ReLU is perfect...

- The value fed into ReLU:
 \[l_j = \sum_k W_{j,k} x_k + b_j \]

Thinking activity: How could we always get negative values?

\[f(x) = \begin{cases}
 x, & x > 0 \\
 0, & \text{else}
\end{cases} \]
But not even ReLU is perfect...

- The value fed into ReLU:
 - \(l_j = \sum_k W_{j,k} x_k + b_j \)

- If our inputs \(x_k \) are bounded (e.g. \([0,1]\)), then the following is possible:
 - The weights have small magnitude
 - The bias is a large negative number

- In this case, \(l_j \) will always be negative!

\[f(x) = \begin{cases}
 x, & x > 0 \\
 0, & \text{else}
\end{cases} \]
But not even ReLU is perfect...

• Does this ever happen in practice?

 • Yes! A large gradient update can ‘accidentally’ knock the parameters into a state where this happens.

 • **Known cases** where as much as 40% of the network suffers from this

Known as the **Dead ReLU problem**

\[
 f(x) = \begin{cases}
 x, & x > 0 \\
 0, & \text{else}
\end{cases}
\]
Leaky ReLU

• Fix — we give a tiny positive slope for negative inputs
• Some activation “leaks” through the barrier

\[f(x) = \begin{cases}
 x, & x > 0 \\
 ax, & \text{else}
\end{cases} \]

\[\text{LeakyReLU}(x) = \max(0, x) + a \cdot \min(0, x) \]
Other Activation Functions

Softplus

CLASS `torch.nn.Softplus(betasize, threshold=20)`
Applies the element-wise function:

\[\text{Softplus}(x) = \frac{1}{\beta} \log(1 + \exp(\beta \times x)) \]

SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.

For numerical stability the implementation reverts to the linear function for inputs above a certain value.

LogSigmoid

CLASS `torch.nn.LogSigmoid`
Applies the element-wise function:

\[\text{LogSigmoid}(x) = \log \left(\frac{1}{1 + \exp(-x)} \right) \]

Hardshrink

CLASS `torch.nn.Hardshrink(lambd=0.5)`
Applies the hard shrinkage function element-wise:

\[\text{HardShrink}(x) = \begin{cases}
 x, & \text{if } x > \lambda \\
 x, & \text{if } x < -\lambda \\
 0, & \text{otherwise}
\end{cases} \]

CELU

CLASS `torch.nn.CELU(alpha=1.0, inplace=False)`
Applies the element-wise function:

\[\text{CELU}(x) = \max(0, x) + \min(0, \alpha \times (\exp(x/\alpha) - 1)) \]

More details can be found in the paper *Continuously Differentiable Exponential Linear Units*.

Parameters

- alpha – the \(\alpha \) value for the CELU formulation. Default: 1.0
- inplace – can optionally do the operation in-place. Default: False

Shape

- Input: \((N, *)\) where * means, any number of additional dimensions
- Output: \((N, *)\), same shape as the input

Great PyTorch documentation [here](#)!
Reasons to use other activation functions

• Bounding network outputs to a particular range
 • Tanh: [-1, 1]
 • Sigmoid: [0,1]
 • Softplus: [0, ∞]

• Example: Predicting a person’s age from other biological features
 • Age is a strictly positive quantity
 • We can help our network learn by restricting it to output only positive numbers
 • Use a **Softplus activation** on the output

Any questions?
Building a multi-layer network

• Previously:

1x784 \rightarrow 784x10 \rightarrow 10x1 \rightarrow \text{softmax} \rightarrow \text{output}
Consequences of adding activation layers

- Previously:
 - Input: 1x784
 - Linear layer: 784x10
 - Softmax: 10x1

- Now:
 - Input: 1x784
 - Layer 1: 784x?
 - Layer 2: ?x10
 - Softmax: 10x1

What dimension to use here??
Recap

- More layers \rightarrow more complicated function
- Linear layers are not sufficient!
- Need non-linearity
- Exploding gradients
- Vanishing gradients
- ReLU, Leaky ReLU

Activation functions

Stacking multiple layers