Multi-layer NNs contd. + Intro to CNN

$$
\text { SRTITE } 2024
$$

Ritambhara Singh

February 14, 2024
Wednesday



## Recap: Reasons to use other activation functions

- Bounding network outputs to a particular range
- Tanh: [-1, 1]
- Sigmoid: [0,1]
- Softplus: $[0, \infty]$

- Example: Predicting a person's age from other biological features
- Age is a strictly positive quantity
- We can help our network learn by restricting it to output only positive numbers
- Use a Softplus activation on the output


## Today's goal - continue to learn about multilayer networks and learn about convolution

(1) What are hidden layers and hyperparameters?
(2) Universal approximate theorem - what a one-hidden layer network can learn?
(3) Intro to CNNs - Convolution

## Recap: Consequences of adding activation layers

- Previously:

- Now:

What dimension to use here??


## "Hidden Layers"

- The output of a function that doesn't feed into the output layer (like softmax) is called a hidden layer
- Have to set the size $h$ of these hidden layers
- More linear units $\rightarrow$ more hidden layer sizes



## Hyperparameters

- Hidden layer sizes are a hyperparameter - configuration external to model, value usually set before training begins
- Number of epochs, batch size, etc.
- Contrast this with a learnable parameter, we keep talking about
- Rule of thumb
- Start out making hidden layers the same size as the input
- Then, tweak it to see the effect
- There are more principled (and time-consuming) ways to set them
- Grid search, random search, Bayesian optimization...
- See here for an overview and more references


## What a multi-layer neural network could look like?



# What functions can a one-hidden-layer neural net learn? 

## Universal Approximation Theorem [Cybenko '89]

- Remarkably, a one-hidden-layer network can actually represent any function (under the following assumptions):
- Function is continuous
- We are modeling the function over a closed, bounded subset of $\mathbb{R}^{n}$
- Activation function is sigmoidal (i.e. bounded and monotonic)
- The proof of this theorem is an existence proof
- i.e. it tells us that a network exists which can approximate any function, not how to actually learn it

A "Proof By Picture"

## Universal Approximation Theorem "Proof"

- Start with a complex one dimensional function that relates some input $x$ to some output y
- We don't know what the function that relates $x$ and $y$ is



## Universal Approximation Theorem "Proof"

- We can build up this function using simpler functions, i.e. box functions



## Universal Approximation Theorem "Proof"



## How does this relate to activation functions?

- We can subtract two sigmoids to create these box functions





## Universal Approximation Theorem "Proof"

- Summing up these simpler functions can do a pretty good job of approximating the actual function



## Universal Approximation Theorem "Proof"

- Using more functions lets us model a complex function more accurately
- Up to an arbitrary degree of accuracy, if we want
$f(x)$



## Universal Approximation Theorem "Proof"

- Very inefficient way to approximate
- Need lots of box functions $\rightarrow$ lots of sigmoids $\rightarrow$ very large hidden layer
- Real networks trained with gradient descent can't even learn these kinds of approximations
- They find smooth approximations, require more hidden layers to get this same level of complexity.
- Nevertheless, the theorem is often cited to back up claims that a sufficiently complex neural net "can learn any function"

Do you remember what

## Can a multi-layer network learn XOR?



## Let's find out

## Convolution and CNNs



Images!

## Does a network have to be fully connected?

Fully Connected


Partially Connected?


Why would you ever want to do this?

## Partially Connected Networks?

- Fewer connections == Worse results? ...right?
- Advantages of Partial Connections
- Fewer connections $\rightarrow$ fewer weights to learn
- Faster training; more compact models; better generalization performance
- Can design connectivity pattern that exploits knowledge of the data (like connecting patterns in features)


What's a data type where we can do this?


## When partially connected networks are useful

- Observation: Nearby pixels are more likely to be related
- Assumption: It is okay to only connect the nearby pixels



## Limitations of Full Connections for MNIST

Suppose we've got a well-trained MNIST classifier...

\#1 encoded as $\rightarrow$

## Limitations of Full Connections for MNIST

Suppose we've got a well-trained MNIST classifier...

\#1 encoded as $\rightarrow$
this pixel gets weight 0.6


## Limitations of Full Connections for MNIST

If we shift the digit to the right, then a different set of weights becomes relevant $\rightarrow$ network might have trouble classifying this as a 1 ...

\#1 encoded as $\rightarrow$
this pixel gets weight 0.6

this pixel gets weight 0.9

## This would not be a problem for the human visual system

Our eyes don't look at absolute intensity values...

\#1 encoded as $\rightarrow$


## This would not be a problem for the human visual system

...but rather local differences in intensities

\#1 encoded as $\rightarrow$


## Translational Invariance

- To make a neural net $f$ robust in this same way, it should ideally satisfy translational invariance: $f(T(x))=f(x)$, where
- $x$ is the input image
- $T$ is a translation (i.e. a horizonal and/or vertical shift)

$f(\|) \stackrel{?}{=} f(\|)$


# Fully Connected Nets are not Translationally Invariant 

How to make the network translationally invariant?

Focus on local differences/patterns



\title{

Focusing on local patterns = partial

## connections

}

## connections

}


Fully Connected


Partially Connected


## The Main Building Block: Convolution

Convolution is an operation that takes two inputs:
(1) An image ( $2 D-B / W$ )
(2) A filter (also called a kernel)


| 1 | 1 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| -1 | -1 | -1 |

2D array of numbers; could be any values

## What Convolution Does (Visually)

image

| 2 | 0 | 1 | 3 |
| :--- | :--- | :--- | :--- |
| 7 | 1 | 1 | 0 |
| 0 | 2 | 5 | 0 |
| 0 | 5 | 1 | 4 |

filter/kernel


## What Convolution Does (Visually)

\section*{Overlay the filter on the image <br> image <br> | 1 | 1 | 1 | 3 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| -1 | -1 | -1 | 0 |
| 0 | 5 | 1 | 4 |}

## What Convolution Does (Visually)

Sum up multiplied values to produce output value
image output


## What Convolution Does (Visually)

Move the filter over by one pixel
image
output

| 1 | 1 | 1 | 3 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| -1 | -1 | -1 | 0 |
| 0 | 5 | 1 | 4 |



## What Convolution Does (Visually)

Move the filter over by one pixel
image
output

| 2 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: |
| 7 | 0 | 0 | 0 |
| 0 | -1 | -1 | -1 |
| 0 | 5 | 1 | 4 |



## What Convolution Does (Visually)

Repeat (multiply, sum up)
image

| 2 | ${ }^{0 \times 1}$ | $1{ }^{1 \times}$ | 3x |
| :---: | :---: | :---: | :---: |
| 7 | $1 \times 0$ | $1 \times 0$ | 0.0 |
| 0 | 2 | 5 | $0^{*}$ |
| 0 | 5 | 1 | 4 |

output


## What Convolution Does (Visually)

## Repeat (multiply, sum up)

image
output

| 2 | $0 \times 1$ | $1_{\text {x } 1}$ | 3x1 | $\begin{aligned} & 0 \times 1+1 \times 1+3 \times 1+0 \times 0+1 \times 0 \\ & +0 \times 0+2 x-1+5 x-1+0 x-1 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 1×0 | 1×0 | $0 \times 0$ |  |  |
|  |  |  |  | -4 | -3 |
| 0 | 2x-1 | $5_{x-1}$ | $0{ }_{\text {x-1 }}$ |  |  |
| 0 | 5 | 1 | 4 |  |  |

## What Convolution Does (Visually)

## Repeat...

image output

| 2 | 0 | 1 | 3 | $\begin{aligned} & 7 \times 1+1 \times 1+1 \times 1+0 \times 0+2 \times 0 \\ & +5 \times 0+0 x-1+5 x-1+1 x-1 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7×1 | $1 \times 1$ | $1 \times 1$ | 0 |  | $\frac{-4}{3}$ | $-3$ |
| Ox0 | 2×0 | $5 \times 0$ | 0 |  |  |  |
| Ox-1 | $5 \mathrm{x}-1$ | $1_{x-1}$ | 4 |  |  |  |

## What Convolution Does (Visually)

## Repeat...

image
output

| 2 | 0 | 1 | 3 |
| :---: | :---: | :---: | :---: |
| 7 | ${ }^{1 \times 1}$ | $1 \times$ | 0 |
| 0 | 2,0 | 550 | 0 |
| 0 | $5 \times$ | $1 \times$ | $4 \times$ |



## What Convolution Does (Visually)

In summary:
image

| 2 | 0 | 1 | 3 |
| :--- | :--- | :--- | :--- |
| 7 | 1 | 1 | 0 |
| 0 | 2 | 5 | 0 |
| 0 | 5 | 1 | 4 |

filter/kernel


## Try it out yourself!

Convolve this image

| 2 | 0 | 3 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 |
| 1 | 0 | 2 | 0 |
| 1 | 0 | 1 | 2 |

With this filter

| 1 | 0 | -1 |
| :--- | :--- | :--- |
| 2 | 0 | -2 |
| 1 | 0 | -1 |



## Recap

Building multi-layer neural networks


Introduction to CNNs


Partially connected networks are useful (e.g., for images!)

Fully connected networks are not transitionally invariant


