
Deep Learning
CSCI 1470/2470

Spring 2024

Ritambhara Singh

February 14, 2024
Wednesday

Multi-layer NNs contd. + Intro to CNN

Recap More layers à more
complicated function

Linear layers are not sufficient!

Need non-linearity

Stacking multiple
layers

Exploding gradients

Vanishing gradients

ReLU, Leaky ReLU

Activation
functions

Recap: Reasons to use other activation
functions
• Bounding network outputs to a particular range
• Tanh: [-1, 1]
• Sigmoid: [0,1]
• Softplus: [0, ∞]

• Example: Predicting a person’s age from other biological features
• Age is a strictly positive quantity
• We can help our network learn by restricting it to output only positive

numbers
• Use a Softplus activation on the output

3

Today’s goal – continue to learn about multi-
layer networks and learn about convolution

(1) What are hidden layers and hyperparameters?

(2) Universal approximate theorem – what a one-hidden layer network
can learn?

(3) Intro to CNNs – Convolution

Recap: Consequences of adding activation layers

• Previously: • Now:

5
linear layer

	Σ

softmaxinput

1x784 784x10 10x1

softmax

784×?

	Σ

input

Σ𝑎

?×10

layer 1 layer 2

1x784 10x1

What dimension to use here??

“Hidden Layers”
• The output of a function that doesn’t feed into the output layer (like

softmax) is called a hidden layer
• Have to set the size ℎ of these hidden layers
• More linear units à more hidden layer sizes

6
softmax

784×ℎ

	Σ

input

Σ𝑎

ℎ×10

layer 1 layer 2

1x784 10x1

Hyperparameters

• Hidden layer sizes are a hyperparameter — configuration external to
model, value usually set before training begins
• Number of epochs, batch size, etc.
• Contrast this with a learnable parameter, we keep talking about

• Rule of thumb
• Start out making hidden layers the same size as the input
• Then, tweak it to see the effect

• There are more principled (and time-consuming) ways to set them
• Grid search, random search, Bayesian optimization...
• See here for an overview and more references

7

https://en.wikipedia.org/wiki/Hyperparameter_optimization

What a multi-layer neural network could look
like?

softmax

784×ℎ!

	Σ

input

Σ𝑎

ℎ"×10

layer 1 layer 4

1x784 10x1

	Σ 𝑎 	Σ 𝑎

ℎ!×ℎ# ℎ#×ℎ"

layer 2 layer 3

What functions can a one-
hidden-layer neural net learn?

9

Universal Approximation Theorem [Cybenko ‘89]

• Remarkably, a one-hidden-layer network can actually represent any
function (under the following assumptions):
• Function is continuous
• We are modeling the function over a closed, bounded subset of ℝ*
• Activation function is sigmoidal (i.e. bounded and monotonic)

• The proof of this theorem is an existence proof
• i.e. it tells us that a network exists which can approximate any function, not

how to actually learn it

10

A “Proof By Picture”

11

Universal Approximation Theorem “Proof”

12

• Start with a complex one
dimensional function that
relates some input x to some
output y

• We don’t know what the
function that relates x and y is

https://hackernoon.com/illustrative-proof-of-universal-approximation-theorem-5845c02822f6

𝑓(𝑥)

https://hackernoon.com/illustrative-proof-of-universal-approximation-theorem-5845c02822f6

Universal Approximation Theorem “Proof”

+ +

• We can build up this function using simpler functions, i.e. box
functions

Universal Approximation Theorem “Proof”

14

𝑓(𝑥)

How does this relate to activation functions?

15

• We can subtract two sigmoids to create these box functions

Universal Approximation Theorem “Proof”

16

𝑓(𝑥)
• Summing up these simpler

functions can do a pretty good
job of approximating the actual
function

Universal Approximation Theorem “Proof”

17

𝑓(𝑥)
• Using more functions lets us

model a complex function more
accurately
• Up to an arbitrary degree of

accuracy, if we want

Universal Approximation Theorem “Proof”

18

• Very inefficient way to approximate
• Need lots of box functions à lots of sigmoids à very large hidden layer

• Real networks trained with gradient descent can’t even learn these
kinds of approximations
• They find smooth approximations, require more hidden layers to get this same

level of complexity.

• Nevertheless, the theorem is often cited to back up claims that a
sufficiently complex neural net “can learn any function”

Any questions?

Do you remember what
function a perceptron could not

learn?

Can a multi-layer network learn XOR?

19

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

x2

x1

XOR Function

Output = 1

Output = 0

𝑤! ⋅ 𝑥! + 𝑤" ⋅ 𝑥" + 𝑏 > 0	?

𝑤! ⋅ 𝑥! + 𝑤" ⋅ 𝑥" + 𝑏 > 0	?

Let’s find out

20

Google Tensorflow Playground

https://playground.tensorflow.org/

Convolution and CNNs

21

What kind of datasets CNNs
are popularly applied to?

Images!
22

Does a network have to be fully connected?

Fully Connected Partially Connected?

Why would you ever want to do this?

Partially Connected Networks?

• Fewer connections == Worse results? ...right?

• Advantages of Partial Connections
• Fewer connections à fewer weights to learn

• Faster training; more compact models; better generalization performance

• Can design connectivity pattern that exploits knowledge of the data
(like connecting patterns in features)

What’s a data type where we can do this?

24

Images!
25

• Observation: Nearby pixels are
more likely to be related

• Assumption: It is okay to only
connect the nearby pixels

When partially connected networks are useful

Limitations of Full Connections for MNIST

27

#1 encoded as à

Suppose we’ve got a well-trained MNIST classifier...

Limitations of Full Connections for MNIST

28

#1 encoded as à

this pixel gets weight 0.6

this pixel gets weight 0.1

this pixel gets weight 0.9

Suppose we’ve got a well-trained MNIST classifier...

Limitations of Full Connections for MNIST

29

#1 encoded as à

this pixel gets weight 0.6

this pixel gets weight 0.1

this pixel gets weight 0.9

If we shift the digit to the right, then a different set of
weights becomes relevant à network might have
trouble classifying this as a 1...

Can you tell this is a 1?

This would not be a problem for the
human visual system

30

#1 encoded as à

Our eyes don’t look at absolute intensity values... this pixel has a low intensity

this pixel has a high intensity

this pixel has a low intensity

This would not be a problem for the
human visual system

31

#1 encoded as à

this intensity difference is large

this intensity difference is large

this intensity difference is zero

...but rather local differences in intensities

Translational Invariance

• To make a neural net 𝑓 robust in this same way, it should ideally
satisfy translational invariance: 𝑓 𝑇 𝑥 = 𝑓 𝑥 , where
• 𝑥 is the input image
• 𝑇 is a translation (i.e. a horizonal and/or vertical shift)

32

Fully Connected Nets are not
Translationally Invariant

33

this pixel gets weight 0.6

this pixel gets weight 0.1

this pixel gets weight 0.9

this pixel gets weight 0.6

this pixel gets weight 0.1

this pixel gets weight 0.9

Sum of these three: 0.6 ⋅ 0.8 + 0.1 ⋅ 0 + 0.9 ⋅ 1 = 1.38 Sum of these three: 0.6 ⋅ 0 + 0.1 ⋅ 0.4	 + 0.9 ⋅ 0 = 0.4

𝑇

How to make the network
translationally invariant?

Focus on local
differences/patterns

Focusing on local patterns = partial
connections

Fully Connected Partially Connected

How do we do that?

Any questions?

The Main Building Block: Convolution

Convolution is an operation that takes two inputs:

35

(1) An image (2D – B/W) (2) A filter (also called a kernel)

1 1 1

0 0 0

-1 -1 -1

2D array of numbers; could be any values

What Convolution Does (Visually)

36

2 0 1 3

7 1 1 0

0 2 5 0

0 5 1 4

image

(We use this symbol for convolution)
(The verb form is “convolve”)

filter/kernel

1 1 1

0 0 0

-1 -1 -1

What Convolution Does (Visually)

37

2 0 1 3

7 1 1 0

0 2 5 0

0 5 1 4

image

1 1 1

0 0 0

-1 -1 -1

Overlay the filter on the image

What Convolution Does (Visually)

38

2x1 0x1 1x1 3
7x0 1x0 1x0 0
0x-1 2x-1 5x-1 0

0 5 1 4

image

Sum up multiplied values to produce output value

-4

2x1 + 0x1 + 1x1 + 7x0
+ 0x0 + 1x0 + 0x-1 +
2x-1 + 5x-1

output

What Convolution Does (Visually)

39

image

Move the filter over by one pixel

-4

2 0 1 3

7 1 1 0

0 2 5 0

0 5 1 4

output

1 1 1

0 0 0

-1 -1 -1

What Convolution Does (Visually)

40

image

Move the filter over by one pixel

-4

2 0 1 3

7 1 1 0

0 2 5 0

0 5 1 4

output

1 1 1

0 0 0

-1 -1 -1

What Convolution Does (Visually)

41

image

Repeat (multiply, sum up)

-4

2 0x1 1x1 3x1

7 1x0 1x0 0x0

0 2x-1 5x-1 0x-1

0 5 1 4

output

What Convolution Does (Visually)

42

image

Repeat (multiply, sum up)

-4 -3

2 0x1 1x1 3x1

7 1x0 1x0 0x0

0 2x-1 5x-1 0x-1

0 5 1 4

output
0x1 + 1x1 + 3x1 + 0x0 + 1x0
+ 0x0 + 2x-1 + 5x-1 + 0x-1

What Convolution Does (Visually)

43

image

Repeat...

-4 -3

3

output

2 0 1 3
7x1 1x1 1x1 0
0x0 2x0 5x0 0
0x-1 5x-1 1x-1 4

7x1 + 1x1 + 1x1 + 0x0 + 2x0
+ 5x0 + 0x-1 + 5x-1 + 1x-1

What Convolution Does (Visually)

44

image

Repeat...

-4 -3

3 -8

output

1x1 + 1x1 + 0x1 + 2x0 + 5x0
+ 0x0 + 5x-1 + 1x-1 + 4x-1

2 0 1 3

7 1x1 1x1 0x1

0 2x0 5x0 0x0

0 5x-1 1x-1 4x-1

What Convolution Does (Visually)

45

image

-4 -3

3 -8

output

2 0 1 3

7 1 1 0

0 2 5 0

0 5 1 4

1 1 1

0 0 0

-1 -1 -1

=

In summary:

filter/kernel

Try it out yourself!
Convolve this
image

46

2 0 3 1

1 1 0 0

1 0 2 0

1 0 1 2

With this filter

1 0 -1

2 0 -2

1 0 -1

47

2 0 3 1

1 1 0 0

1 0 2 0

1 0 1 2

1 0 -1

2 0 -2

1 0 -1

=

Recap Hidden layers

What a one-hidden layer
network can learn

What a multi-layer network can
learn

Building multi-layer
neural networks

Partially connected networks
are useful (e.g., for images!)

Fully connected networks are
not transitionally invariant

Convolutional filter

Introduction
to CNNs

