zZ
zZ
O
O
)
O
-
i)
=
+
©
)
C
O
O
Vp)
zZ
zZ
-
Q
>
R

Mult

n

ara
ary 14, 2024

5

itambh

R
Febru

Reca p _ More layers = more

complicated function
| | X |a
Stacking multiple I Linear layers are not sufficient! I
layers
I Need non-linearity I Input ll';‘;:rr SEHESIan

I Exploding gradients I
- Vanishing gradients
Activation I 99 I i
functions
| RelU, Leaky RelU |

3

Recap: Reasons to use other activation
* Bounding network outputs to a particular range

functions ,
 Tanh: [-1, 1] 21

* Sigmoid: [0,1] 0=_/

» Softplus: [0, oo]

* Example: Predicting a person’s age from other biological features
* Age is a strictly positive quantity

* We can help our network learn by restricting it to output only positive
numbers

* Use a Softplus activation on the output

Today’s goal — continue to learn about multi-
layer networks and learn about convolution

(1) What are hidden layers and hyperparameters?

(2) Universal approximate theorem — what a one-hidden layer network
can learn?

(3) Intro to CNNs — Convolution

Recap: Consequences of adding activation layers

. ?7?
. PFEVIOUS|y: e Now: What dimension to use here?

?
1x784 784x10 10x1 1x784 784X 7%x10 10x1

output

output

input layer 1 layer 2 softmax

input linear layer softmax

“Hidden Layers”

* The output of a function that doesn’t feed into the output layer (like
softmax) is called a hidden layer

* Have to set the size h of these hidden layers

* More linear units = more hidden layer sizes

1x784 784X hx10 10x1
> O |—— output
xlla 2

input layer 1 layer 2 softmax

Hyperparameters

* Hidden layer sizes are a hyperparameter — configuration external to
model, value usually set before training begins

* Number of epochs, batch size, etc.
e Contrast this with a learnable parameter, we keep talking about

e Rule of thumb

e Start out making hidden layers the same size as the input
* Then, tweak it to see the effect

* There are more principled (and time-consuming) ways to set them
* Grid search, random search, Bayesian optimization...
* See here for an overview and more references

https://en.wikipedia.org/wiki/Hyperparameter_optimization

What a multi-layer neural network could look
like?

1x784 784Xh, hiXh, hyXhs3

hyx10 10x1

output

input layer 1 layer 2 layer 3 layer 4 softmax

What functions can a one-
hidden-layer neural net learn?

Universal Approximation Theorem [Cybenko ‘89]

* Remarkably, a one-hidden-layer network can actually represent any
function (under the following assumptions):
* Function is continuous
* We are modeling the function over a closed, bounded subset of R"
» Activation function is sigmoidal (i.e. bounded and monotonic)

* The proof of this theorem is an existence proof

* j.e. it tells us that a network exists which can approximate any function, not
how to actually learn it

A “Proof By Picture”

Universal Approximation Theorem “Proof”

e Start with a complex one
dimensional function that
relates some input x to some
outputy

« We don't know what the
function that relates x and y is

fx)—

https://hackernoon.com/illustrative-proof-of-universal-approximation-theorem-5845c02822f6 12

https://hackernoon.com/illustrative-proof-of-universal-approximation-theorem-5845c02822f6

Universal Approximation Theorem “Proof”

* We can build up this function using simpler functions, i.e. box
functions

Universal Approximation Theorem “Proot”

f(x)

14

How does this relate to activation functions?

« We can subtract two sigmoids to create these box functions

15

Universal Approximation Theorem “Proot”

« Summing up these simpler J&)

functions can do a pretty good
job of approximating the actual
function

16

Universal Approximation Theorem “Proot”

« Using more functions lets us J&)

model a complex function more
accurately

« Up to an arbitrary degree of
accuracy, if we want

17

Any questions?

. L . 7”9
Universal Approximation Theorem “Proof
.

« Veryinefficient way to approximate
« Need lots of box functions = lots of sigmoids - very large hidden layer

« Real networks trained with gradient descent can’t even learn these
kinds of approximations

* They find smooth approximations, require more hidden layers to get this same
level of complexity.

* Nevertheless, the theorem is often cited to back up claims that a
sufficiently complex neural net “can learn any function”

Do you remember what
function a perceptron could not
learn?

Can a multi-layer network learn XOR?

XOR Function
@® Output=0

19

Let’s find out

Google Tensorflow Playground

20

https://playground.tensorflow.org/

What kind of datasets CNNs
are popularly applied to?

Convolution and CNNs

Does a network have to be fully connected?

Fully Connected Partially Connected?

e

O<xO

>
r

3
‘Pf
e
77

O
N

#\4

)
99
7

AN
XA DRI DN) LU
SREKEN(OKREIIN < XS 0 X7
SEEOS O NHRET LSS X LK
BB FBIEK — 5 = 2\
2N\ ALY
Q VRO /
A\lcﬁ,ﬁc <<>0

Why would you ever want to do this?

Partially Connected Networks?

* Fewer connections == Worse results? ...right?

* Advantages of Partial Connections
* Fewer connections - fewer weights to learn
» Faster training; more compact models; better generalization performance

e Can design connectivity pattern that exploits knowledge of the data
(like connecting patterns in features)

What's a data type where we can do this?

25

When partially connected networks are useful

* Observation: Nearby pixels are
more likely to be related

* Assumption: It is okay to only
connect the nearby pixels

Limitations of Full Connections for MNIST

Suppose we've got a well-trained MNIST classifier...

12

#1 encoded as =2

0

0

0

0

0

0

0

0

0

~-EEEA-

=}

cclEHNEEEEEEE - -

-HEEEEEE

0

0

0

0

0

0

0

0

0

0

27

Limitations of Full Connections for MNIST

: . this pixel gets weight 0.6
Suppose we've got a well-trained MNIST classifier...

0 0 0 0
00 0 0 0 0 0 0 0 0 0
6 0 0 0 0
0000000 E B o 0o 0 0 0
0000000 m m o o o oo ol this pixel gets weight 0.1
5 H 2 0o 0 0 0
~ |0 0o 0o 0o 0o 0o o0 H 4 0 J
H E 0 0 0
H B 0 0 0
00 0 o0 0 0 0 ||
§u
|
) 0
0

L0 0 0 0 0 0 0
#1 encoded as =2

this pixel gets weight 0.9

28

Limitations of Full Connections for MNIST

If we shift the digit to the right, then a different set of
weights becomes relevant - network might have
trouble classifying thisas a 1...

this pixel gets weight 0.6

EEES

o o this pixel gets weight 0.1
0 t: J

T

EEEEEEE

Lo o o o0 o0
#1 encoded as =2

Can you tell thisis a 1? this pixel gets weight 0.9

29

This would not be a problem for the

human visual system

Our eyes don't look at absolute intensity values...

12

#1 encoded as =2

this pixel has a low intensity

-

*¢| this pixel has a high intensity
0 l: J

T

EEEEREEES

this pixel has a low intensity

30

This would not be a problem for the
human visual system

...but rather local differences in intensities this intensity difference is large

-

* o| this intensity difference is large
0 0 J

T

EEERESS

#1 encoded as =2

this intensity difference is zero

31

Translational Invariance

* To make a neural net f robust in this same way, it should ideally
satisfy translational invariance: f (T (x)) = f(x), where
e x is the input image
* T is a translation (i.e. a horizonal and/or vertical shift)

o 0 0o 0 0 o
l o 0 0 o 0 o
o 0 0 o0 o0 o

o 0 0 0 0 o

0

0

0 - N
0 e
0 ¥
0 s
0

0

0

0

0

0

0

0

)
1B

A

)

Fully Connected Nets are not

Translationally Invariant

this pixel gets weight 0.6

oo this pixel gets weight 0.1
' _J

I—)
T

this pixel gets weight 0.9

Sum of these three: 0.6 - 0.8+ 0.1-04+0.9-1 = 1.38

UUUUU
00000
00000
DDDDD
OOOOO
OOOOO
DDDDD
UUUUU
DDDDD
DDDDD
OOOOO

DDDDDD

EEER

‘A EEEEEEN

How to make the network
translationally invariant?

Focus on local
differences/patterns

this pixel gets weight 0.6

o this pixel gets weight 0.1
. _J

this pixel gets weight 0.9

Sum of these three: 0.6 -04+0.1-0.4 +09-0=0.4

33

©
)
S
Q0]
Q.
[
Vg
-
S
O,
4+
4+
qu)
Q.
(O
@)
O
-
O
Q0o
=
Vg
>
@)
O
L

Vg
-
O
4
O
Q
-
-
O
O

Partially Connected

Fully Connected

v

i/ _7/_,«»\%\\,\

,ﬁm Sl ww“‘
’ & ‘ ‘

\ A ') '(A
» R
\‘VAO/&'NI'J’I/I

4\\\4 ROR /AvW//#/

How do we do that?

The Main Building Block: Convolution

Convolution is an operation that takes two inputs:

(1) An image (2D - B/W) (2) A Filter (also called a kernel)
111
0O(0] 0
-1|1-1(-1

2D array of numbers; could be any values

What Convolution Does (Visually)

image filter/kernel
2 (013
701|1]0 ol el e
0l2|5]|0 ® [(2]%9]°
‘ -1|-1|-1
0(5[1]4 .

——~

~
(We use this symbol for convolution)
(The verb form is “convolve”)

What Convolution Does (Visually)

o

o

o
= O[O W

What Convolution Does (Visually)

image

output

2x1 + Ox1 + 1x1 + 7x0
+ Ox0 + 1x0 + Ox-1 +

"
—y
—
—y
"
b

" >

-4

38

What Convolution Does (Visually)

image output

o

o

o
= O[O W

What Convolution Does (Visually)

image output

OO | N D
I

=

I

=

I

=

What Convolution Does (Visually)

image

Oxl

1x1

3x1

1x0

1x0

0x0

output

2x—1

5x—1

Ox—l

O|O | N D

What Convolution Does (Visually)

-
__-——

output

Ox1 + 1x1 + 3x1 + Ox0 + 1x0
+ 0x0 + 2x-1 + 5x-1 + Ox-1

’_——~

42

What Convolution Does (Visually)

7x1 + 1x1 + 1x1 + Ox0 + 2x0
+ 5x0 + Ox-1 + 5x-1 + 1x-1

el L -
L —"
——
—_—
—_—y

output

43

What Convolution Does (Visually)

image output

1x1 + 1x1 + 0x1 + 2x0 + 5x0| _4 _3
+ 0Ox0 + 5x-1 + 1x-1 +4x-1

-
e T -
e mm = ==

44

image

What Convolution Does (Visually)

filter/kernel

output

O|O | N D

(NN R | O

Rlo| R

= O[O W

Try it out yourself!

Convolve this
image

ol B o B o B A
O]l O | k| O
RN Ol W
NI O[O K

With this Filter

1|0 |-1
20 |-2
1|0 |-1

-1
-2
-1

1|0

210

1|0

2(0]3(1
111{0(0
110(2(0
1|10[|1|2

Recap

Building multi-layer
neural networks

Introduction
to CNNs

Hidden layers

What a one-hidden layer
network can learn

What a multi-layer network can
learn

Partially connected networks
are useful (e.g., for images!)

Fully connected networks are

not transitionally invariant

Convolutional filter

O
..

0/ 9900)¢
P>

Q)

. 'o®
<) b
9/0)'e © 0>

o)
O

