
Deep Learning
CSCI 1470/2470

Spring 2024

Ritambhara Singh

February 23, 2024
Friday

Overfitting and regularization

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Recap Architecture

AlexNet + Pooling

CNNs are “sort of” translationally
invariant

CNNs

Many layers = vanishing
gradient

ResNet + Residual blocks

Batch normalization

Deeper CNNs

MNIST & CIFAR are really nice datasets!

- There’s a clear “absolute truth”
- A 4 is a 4, and a 5 is a 5

- Labels are guaranteed to be good
- Each class is well-represented – there’s lots of data for each class
- Lots of data in general

3

...most data isn’t so nice

4

Examples of messy data

5

IMDB Movie Review Data

Patient Data

DNA sequence data
Astronomy data

Dealing with messy data: preprocessing

- Always necessary (unless it’s preprocessed for you…)
- Goal: get messy, unstructured data into usable data for your model

- Ultimately, data must be converted into tensors to be fed to your model

- What exactly you need to do is dataset- and context- dependent
- Language models: tokenization, UNKing, ...
- Quantify non-numerical entities (e.g. categories à one-hot vectors)
- Drop outliers?
- Normalize/standardize inputs

6

Dealing with messy data: preprocessing

- Always necessary (unless it’s preprocessed for you…)
- Goal: get messy, unstructured data into usable data for your model

- Ultimately, data must be converted into tensors to be fed to your model

- What exactly you need to do is dataset- and context- dependent
- Language models: tokenization, UNKing, ...
- Quantify non-numerical entities (e.g. categories à one-hot vectors)
- Drop outliers?
- Normalize/standardize inputs

7

Does this mean there’s a group your model
systematically fails for?

Does your quantification make sense?
What assumptions does it make about
the world – e.g. gender binary or
racial categories?

Consequences of complex data...

• Demo

8

https://colab.research.google.com/drive/1zWEkuYrsvxR0Y_U9pWhFwynEY4Rd0Asu?usp=sharing

Consequences of complex data...

9

IMDB – TRAINING LOSS
MNIST – VALIDATION
LOSS

num_epochs

MNIST – TRAINING LOSS
IMDB – VALIDATION LOSS

num_epochs

This is an example of overfitting

What is the simplest thing to
do here?

Overfitting: What can we do about it?

1. Early stopping

10

Early stopping: pseudocode

curr_valid_loss = inf
for i in range(n_epochs):
 train model()
 new_valid_loss = model.get_test_loss()
 if new_valid_loss > curr_valid_loss:
 break
 else:
 curr_valid_loss = new_valid_loss

11

Early stopping: thoughts

This is kind of a hack...

Can we stop validation loss from increasing altogether?

12

Any ideas?

Overfitting: What can we do about it?

1. Early stopping
2. Reduce parameters

13

Reduce parameters - why?

14

More parameters = more ‘knobs’ to fiddle = more possibilities to learn
something overly-specific to the training data
• Example: curve fitting

Reduce parameters - why?

15

More parameters = more ‘knobs’ to fiddle = more possibilities to learn
something overly-specific to the training data
• Example: curve fitting

𝑦 = 3𝑥! + 2𝑥 + 4 𝑦 = 2𝑥" − 4𝑥! + 	𝑥 − 3 𝑦
= 7𝑥#$ + 𝑥% + 6𝑥& − 3𝑥'
− 2𝑥(…+ 𝑥 − 3

Reduce parameters - why?

16

More parameters = more ‘knobs’ to fiddle = more possibilities to learn
something overly-specific to the training data
• Example: curve fitting

𝑦 = 3𝑥! + 2𝑥 + 4 𝑦 = 2𝑥" − 4𝑥! + 	𝑥 − 3 𝑦
= 7𝑥#$ + 𝑥% + 6𝑥& − 3𝑥'
− 2𝑥(…+ 𝑥 − 3

Reduce parameters - why?

17

More parameters = more ‘knobs’ to fiddle = more possibilities to learn
something overly-specific to the training data
• Example: curve fitting

𝑦 = 3𝑥! + 2𝑥 + 4 𝑦 = 2𝑥" − 4𝑥! + 	𝑥 − 3 𝑦
= 7𝑥#$ + 𝑥% + 6𝑥& − 3𝑥'
− 2𝑥(…+ 𝑥 − 3

This is probably the best fit curve...

Reduce parameters in a Neural Net: How?

- Fully connected nets?
- CNN?
- Any NN?

18

Reduce parameters in a Neural Net: How?

- Fully connected:

19

softmaxlinear
layer

	Σ

activationinput

	Σ𝑎

linear
layer

What can be done here?

Reduce parameters in a Neural Net: How?

- Fully connected: reduce layer size

20

softmaxlinear
layer

	Σ

activationinput

	Σ𝑎

linear
layer

Reduce parameters in a Neural Net: How?

- CNN:

21
3

linear layer softmax

9

64

64

5

5

3

30

30

3

3

9

ReLU
+

Pool
ReLU

+
Pool

What about here?

Reduce parameters in a Neural Net: How?

- CNN: decrease num_channels (and also possibly filter_size)

22
3

linear layer softmax

4

64

64

3

3

2

30

30

2
2

4

ReLU
+

Pool
ReLU

+
Pool

Reduce parameters in a Neural Net: How?

- All architectures: Decrease number of layers

23

softmaxlinear
layer

	Σ

activationinput

	Σ𝑎

linear
layer

Reduce parameters in a Neural Net: How?

- All architectures: Decrease number of layers

24

softmaxlinear
layer

	Σ

input

Reduce parameters in a Neural Net: How?

- All architectures: Decrease number of layers

25
3

linear layer softmax

9

64

64

5

5

3

30

30

3

3

1

ReLU
+

Pool
ReLU

+
Pool

Reduce parameters in a Neural Net: How?

- All architectures: Decrease number of layers

26
3

linear layer softmax

64

64

5

5

3

ReLU
+

Pool

Any questions?

Reducing parameters: Why not?
- Seen (by deep learning folks) as a bit ‘old-fashioned’

- Classical perspective: model complexity should match data complexity
- Deep learning perspective: all real-world data is infinitely complex (i.e. there

are infinite variations on what a handwritten digit can look like). If your
model is overfitting, that just means you don’t have enough data—so get
more!

- What if we can’t get more data?
- (e.g. it’s prohibitively expensive to gather more data)
Synthesize variations on your data

27

Overfitting: What can we do about it?

1. Early stopping
2. Reduce parameters
3. Data augmentation

28

Data Augmentation

• Generate (random) variations on your training data, treat that as
more training data
• Assumption: your (random) variations still produce data that is within the

expected distribution of training data (so you can’t get too crazy)

• Most commonly used on image data

29

Data Augmentation: Image Examples

30

Geometric Transformations

https://bair.berkeley.edu/blog/2019/06/07/data_aug/

Filters & Pixel Intensity Transforms
Blur, sharpen, contrast adjust, ...

https://towardsdatascience.com/data-augmentation-for-deep-learning-4fe21d1a4eb9

Fancy (Learned) Semantic Transforms
(i.e. “Image synthesis for data augmentation”)

https://junyanz.github.io/CycleGAN/

https://bair.berkeley.edu/blog/2019/06/07/data_aug/
https://towardsdatascience.com/data-augmentation-for-deep-learning-4fe21d1a4eb9
https://junyanz.github.io/CycleGAN/

Data Augmentation: Limitations

• Your model might still overfit!
• In general, it’s impossible to design an augmentation procedure that covers
all the dimensions of variation your data might experience
• Your model can still overfit to patterns in the dimensions that you don’t

augment with variations...

31

Overfitting: What can we do about it?

1. Early stopping
2. Reduce parameters
3. Data augmentation
4. Dropout

32

Dropout – general intuition
- Preventing the network from learning under perfect conditions; that

is, make it harder for the network to learn

33

A climbing analogy:

A person is climbing a wall using holds

• What if, I make a rule that she can climb
• ... only using certain holds (say just green ones!)
• If she can learn to do this using fewer holds...
• ...she’ll definitely be able to do it with ALL the holds
• (learn better climbing techniques in the process)

Dropout ~= using only a certain holds instead of ALL the holds

Image source https://www.istockphoto.com/illustrations/indoor-climbing

Dropout - what?

34

out

Typical NN: the output of
every node in every layer
is used in the next layer of
the network

in

4
3
1
2
2
4
1

1
1
3
6
2
9
4

4
2
9
4
6
3
1

Dropout - what?

35

out

Dropout: in a single
training pass, the output
of randomly selected
nodes from each layer will
“drop out”, i.e. be set to 0in

4
0
1
2
2
4
1

1
1
3
6
2
9
4

4
2
9
4
6
3
1

Dropout - what?

36

out

Dropout: in a single
training pass, the output
of randomly selected
nodes from each layer will
“drop out”, i.e. be set to 0in

4
0
1
2
0
0
1

1
1
3
6
2
9
4

4
2
9
4
6
3
1

Dropout - what?

37

out

Not just limited to the
input layer: can do this to
any layer of the network

in

0
1
0
6
2
0
4

4
2
0
4
0
3
0

4
0
1
2
0
0
1

Dropout - what?

38

outin

The nodes that drop out will
be different each pass

(re-randomly selected)

Dropout - what?

39

out

The nodes that drop out
will be different each pass
(re-randomly selected)

in

Dropout - why?

- Sort of looks like data augmentation, if you squint hard enough
- Augmenting the data by randomly dropping out parts of it

- Over multiple passes through the net (i.e. during training over many
epochs):

- Randomly dropping neurons “forces” each neuron to learn a non-trivial
weight

- The network can’t learn to rely on spurious correlations (i.e. meaningless
patterns), because they randomly might not be present

40

Do we use dropout while
testing?

Why not?

Dropout: Implications for test time

41

out

• During testing, we stop
dropping out and use all
of the neurons again

in

Dropout: Implications for test time

42

• During testing, we stop
dropping out and use all
of the neurons again

outin

Dropout: Implications for test time

43

out

• During testing, we stop
dropping out and use all
of the neurons again
• If a layer keeps a fraction
𝑝 of its neurons during
training, then when we
use all the neurons at
test time, the next layer
will get a bigger input
than expected...
• What do we do!?

in

Dropout: Implications for test time

44

out

• Solution 1:
Multiply the values of all
neurons by 𝑝, so that the
expected magnitude of
the sum of neurons is the
same

in

×𝑝

×𝑝

×𝑝

×𝑝

×𝑝

×𝑝

×𝑝

Dropout: Implications for test time

45

• Solution 1:
Multiply the values of all
neurons by 𝑝, so that the
expected magnitude of
the sum of neurons is the
same
• Solution 2:

At training time, divide
the values of the kept
neurons by 𝑝

outin

/𝑝

/𝑝

/𝑝

/𝑝

Dropout - implementation

- Handy keras layer!

-tf.keras.layers.Dropout(rate)
- Hyperparameter rate between [0, 1]: the rate at which the outputs of the

previous layer are dropped
- Rate = 0.5: drop half, keep half
- Rate = 0.25: drop ¼, keep ¾

46

Any questions?

Dropout - why not?

- It’s invasive to the network – we’re “reaching inside” and directly
modifying it

- Might be nice if we could get similar benefits without having to
modify the network itself...

47

Overfitting: What can we do about it?

1. Early stopping
2. Reduce parameters
3. Data augmentation
4. Dropout
5. Regularization

48

Regularization - why?

This approach leaves the network architecture unchanged, and instead
only modifies the loss.
• Adds an additional term to our existing loss function

Remember insight from before:
- Overfitting is correlated with the net relying too heavily on too many different correlations

Can we design a loss function that penalizes:
1. Heavy reliance on any correlation in the data?

2. Reliance on too many different correlations in the data?

49

Regularization - L1 vs L2

• 𝜆∑-./0 |𝑊-|
• Penalize absolute value of weights

• Effect: tends to produce sparse weights (i.e.
many zero-valued weights) à prevents the
network from relying on too many different
patterns in the data

50

L1 regularization

For both, this is a term added to the existing loss function.

 𝜆 controls the strength of the penalty

L2 regularization

• 𝜆∑-./0 𝑊-
1

• Penalize sum of squared weights

• Effect: keeps all weights small-ish, i.e.
network can’t learn to rely too heavily on
any single pattern in the data

Regularization - L1 vs L2

Regularization: implementation

• Implementing yourself
• When calculating loss - Get list of model parameters, take L1/L2 norm,

multiply by lambda – add to loss.

• If you only want to regularize the weights of certain layers:
In tf.keras, regularization can be passed as an argument to the
layer constructor:
• tf.keras.layers.Dense(16,
kernel_regularizer=keras.regularizers.l1(lambda),
activation='relu')

52

Putting it all together

• Demo

53

https://colab.research.google.com/drive/1zWEkuYrsvxR0Y_U9pWhFwynEY4Rd0Asu?usp=sharing

TL;DR – Rule of Thumb for Overfitting:

“Make start with the small-ish architecture and your net bigger until it
starts to overfit...

(use train/validation loss curves to monitor)

...then apply one of the techniques from this lecture”

54

Recap Messy and needs pre-processing

Can lead to overfitting

Early stopping may help but not
the best solution

Real-world data

Reduce parameters

Dropout

Regularization

Handling
overfitting Data Augmentation

num_epochs

