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Overfitting and regularization

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”



Recap Architecture

AlexNet + Pooling

CNNs are “sort of” translationally 
invariant 

CNNs

Many layers = vanishing 
gradient

ResNet + Residual blocks

Batch normalization

Deeper CNNs



MNIST & CIFAR are really nice datasets!

- There’s a clear “absolute truth”
- A 4 is a 4, and a 5 is a 5

- Labels are guaranteed to be good
- Each class is well-represented – there’s lots of data for each class
- Lots of data in general
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...most data isn’t so nice
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Examples of messy data
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IMDB Movie Review Data

Patient Data

DNA sequence data
Astronomy data



Dealing with messy data: preprocessing

- Always necessary (unless it’s preprocessed for you…)
- Goal: get messy, unstructured data into usable data for your model

- Ultimately, data must be converted into tensors to be fed to your model

- What exactly you need to do is dataset- and context- dependent
- Language models: tokenization, UNKing, ...
- Quantify non-numerical entities (e.g. categories à one-hot vectors)
- Drop outliers? 
- Normalize/standardize inputs
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Does this mean there’s a group your model 
systematically fails for?

Does your quantification make sense?
What assumptions does it make about 
the world – e.g. gender binary or 
racial categories?



Consequences of complex data...

• Demo
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https://colab.research.google.com/drive/1zWEkuYrsvxR0Y_U9pWhFwynEY4Rd0Asu?usp=sharing


Consequences of complex data...
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IMDB – TRAINING LOSS
MNIST – VALIDATION 
LOSS

num_epochs

MNIST – TRAINING LOSS
IMDB – VALIDATION LOSS

num_epochs

This is an example of overfitting

What is the simplest thing to 
do here?



Overfitting: What can we do about it?

1. Early stopping
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Early stopping: pseudocode

curr_valid_loss = inf
for i in range(n_epochs):
 train model()
 new_valid_loss = model.get_test_loss()
 if new_valid_loss > curr_valid_loss:
  break
 else: 
  curr_valid_loss = new_valid_loss
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Early stopping: thoughts 

This is kind of a hack...

Can we stop validation loss from increasing altogether?
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Any ideas?



Overfitting: What can we do about it?

1. Early stopping
2. Reduce parameters
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Reduce parameters - why?
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More parameters = more ‘knobs’ to fiddle = more possibilities to learn 
something overly-specific to the training data
• Example: curve fitting
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something overly-specific to the training data
• Example: curve fitting

𝑦 = 3𝑥! + 2𝑥 + 4 𝑦 = 2𝑥" − 4𝑥! + 	𝑥 − 3 𝑦
= 7𝑥#$ + 𝑥% + 6𝑥& − 3𝑥'
− 2𝑥(…+ 𝑥 − 3
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Reduce parameters - why?
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More parameters = more ‘knobs’ to fiddle = more possibilities to learn 
something overly-specific to the training data
• Example: curve fitting

𝑦 = 3𝑥! + 2𝑥 + 4 𝑦 = 2𝑥" − 4𝑥! + 	𝑥 − 3 𝑦
= 7𝑥#$ + 𝑥% + 6𝑥& − 3𝑥'
− 2𝑥(…+ 𝑥 − 3

This is probably the best fit curve...



Reduce parameters in a Neural Net: How?

- Fully connected nets?
- CNN? 
- Any NN?
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Reduce parameters in a Neural Net: How?

- Fully connected:
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softmaxlinear 
layer

	Σ

activationinput

	Σ𝑎

linear 
layer

What can be done here?



Reduce parameters in a Neural Net: How?

- Fully connected: reduce layer size

20

softmaxlinear 
layer

	Σ

activationinput

	Σ𝑎

linear 
layer



Reduce parameters in a Neural Net: How?

- CNN:
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linear layer softmax
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What about here?



Reduce parameters in a Neural Net: How?

- CNN: decrease num_channels (and also possibly filter_size)
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Reduce parameters in a Neural Net: How?

- All architectures: Decrease number of layers 
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Reduce parameters in a Neural Net: How?

- All architectures: Decrease number of layers 
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softmaxlinear 
layer

	Σ

input



Reduce parameters in a Neural Net: How?

- All architectures: Decrease number of layers 
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Reduce parameters in a Neural Net: How?

- All architectures: Decrease number of layers 
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Any questions?



Reducing parameters: Why not?
- Seen (by deep learning folks) as a bit ‘old-fashioned’

- Classical perspective: model complexity should match data complexity
- Deep learning perspective: all real-world data is infinitely complex (i.e. there 

are infinite variations on what a handwritten digit can look like). If your 
model is overfitting, that just means you don’t have enough data—so get 
more!

- What if we can’t get more data?
- (e.g. it’s prohibitively expensive to gather more data)
Synthesize variations on your data
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Overfitting: What can we do about it?

1. Early stopping
2. Reduce parameters
3. Data augmentation
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Data Augmentation

• Generate (random) variations on your training data, treat that as 
more training data
• Assumption: your (random) variations still produce data that is within the 

expected distribution of training data (so you can’t get too crazy)

• Most commonly used on image data
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Data Augmentation: Image Examples
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Geometric Transformations

https://bair.berkeley.edu/blog/2019/06/07/data_aug/

Filters & Pixel Intensity Transforms
Blur, sharpen, contrast adjust, ...

https://towardsdatascience.com/data-augmentation-for-deep-learning-4fe21d1a4eb9

Fancy (Learned) Semantic Transforms
(i.e. “Image synthesis for data augmentation”)

https://junyanz.github.io/CycleGAN/ 

https://bair.berkeley.edu/blog/2019/06/07/data_aug/
https://towardsdatascience.com/data-augmentation-for-deep-learning-4fe21d1a4eb9
https://junyanz.github.io/CycleGAN/


Data Augmentation: Limitations

• Your model might still overfit!
• In general, it’s impossible to design an augmentation procedure that covers 
all the dimensions of variation your data might experience
• Your model can still overfit to patterns in the dimensions that you don’t 

augment with variations...
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Overfitting: What can we do about it?

1. Early stopping
2. Reduce parameters
3. Data augmentation
4. Dropout
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Dropout – general intuition
- Preventing the network from learning under perfect conditions; that 

is, make it harder for the network to learn
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A climbing analogy:

A person is climbing a wall using holds

• What if, I make a rule that she can climb 
• ... only using certain holds (say just green ones!)
• If she can learn to do this using fewer holds...
• ...she’ll definitely be able to do it with ALL the holds
• (learn better climbing techniques in the process)

Dropout ~= using only a certain holds instead of ALL the holds

Image source https://www.istockphoto.com/illustrations/indoor-climbing



Dropout - what?
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out

Typical NN: the output of 
every node in every layer 
is used in the next layer of 
the network
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Dropout - what?
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Dropout: in a single 
training pass, the output 
of randomly selected 
nodes from each layer will 
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Dropout - what?
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Dropout - what?
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out

Not just limited to the 
input layer: can do this to 
any layer of the network 
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Dropout - what?
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outin

The nodes that drop out will 
be different each pass

(re-randomly selected)



Dropout - what?
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out

The nodes that drop out 
will be different each pass
(re-randomly selected)

in



Dropout - why?

- Sort of looks like data augmentation, if you squint hard enough
- Augmenting the data by randomly dropping out parts of it

- Over multiple passes through the net (i.e. during training over many 
epochs): 

- Randomly dropping neurons “forces” each neuron to learn a non-trivial 
weight

- The network can’t learn to rely on spurious correlations (i.e. meaningless 
patterns), because they randomly might not be present
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Do we use dropout while 
testing?

Why not?



Dropout: Implications for test time

41

out

• During testing, we stop 
dropping out and use all 
of the neurons again

in



Dropout: Implications for test time
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• During testing, we stop 
dropping out and use all 
of the neurons again

outin



Dropout: Implications for test time
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out

• During testing, we stop 
dropping out and use all 
of the neurons again
• If a layer keeps a fraction 
𝑝 of its neurons during 
training, then when we 
use all the neurons at 
test time, the next layer 
will get a bigger input 
than expected...
• What do we do!?

in



Dropout: Implications for test time
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out

• Solution 1:
Multiply the values of all 
neurons by 𝑝, so that the 
expected magnitude of 
the sum of neurons is the 
same

in
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Dropout: Implications for test time
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• Solution 1:
Multiply the values of all 
neurons by 𝑝, so that the 
expected magnitude of 
the sum of neurons is the 
same
• Solution 2:

At training time, divide 
the values of the kept 
neurons by 𝑝

outin

/𝑝

/𝑝

/𝑝

/𝑝



Dropout - implementation

- Handy keras layer!

-tf.keras.layers.Dropout(rate)
- Hyperparameter rate between [0, 1]: the rate at which the outputs of the 

previous layer are dropped
- Rate = 0.5: drop half, keep half
- Rate = 0.25: drop ¼, keep ¾ 
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Any questions?



Dropout - why not?

- It’s invasive to the network – we’re “reaching inside” and directly 
modifying it

- Might be nice if we could get similar benefits without having to 
modify the network itself...
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Overfitting: What can we do about it?

1. Early stopping
2. Reduce parameters
3. Data augmentation
4. Dropout
5. Regularization
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Regularization - why?

This approach leaves the network architecture unchanged, and instead 
only modifies the loss.
• Adds an additional term to our existing loss function

Remember insight from before: 
- Overfitting is correlated with the net relying too heavily on too many different correlations

Can we design a loss function that penalizes:
1. Heavy reliance on any correlation in the data?

2. Reliance on too many different correlations in the data?
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Regularization - L1 vs L2

• 𝜆∑-./0 |𝑊-|
• Penalize absolute value of weights

• Effect: tends to produce sparse weights (i.e. 
many zero-valued weights) à prevents the 
network from relying on too many different 
patterns in the data
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L1 regularization

For both, this is a term added to the existing loss function.

 𝜆 controls the strength of the penalty

L2 regularization

• 𝜆∑-./0 𝑊-
1

• Penalize sum of squared weights

• Effect: keeps all weights small-ish, i.e. 
network can’t learn to rely too heavily on 
any single pattern in the data



Regularization - L1 vs L2



Regularization: implementation

• Implementing yourself
• When calculating loss - Get list of model parameters, take L1/L2 norm, 

multiply by lambda – add to loss.

• If you only want to regularize the weights of certain layers:
In tf.keras, regularization can be passed as an argument to the 
layer constructor: 
• tf.keras.layers.Dense(16, 
kernel_regularizer=keras.regularizers.l1(lambda), 
activation='relu')
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Putting it all together

• Demo
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https://colab.research.google.com/drive/1zWEkuYrsvxR0Y_U9pWhFwynEY4Rd0Asu?usp=sharing


TL;DR – Rule of Thumb for Overfitting:

“Make start with the small-ish architecture and your net bigger until it 
starts to overfit... 

(use train/validation loss curves to monitor)

...then apply one of the techniques from this lecture” 
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Recap Messy and needs pre-processing

Can lead to overfitting

Early stopping may help but not 
the best solution

Real-world data

Reduce parameters

Dropout

Regularization

Handling 
overfitting Data Augmentation

num_epochs


