
Deep Learning
CSCI 1470/2470

Spring 2024

Ritambhara Singh

March 01, 2024
Friday

Recurrent Neural Networks

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Deep Learning Days – May 6 and 7, 2024
Project teams announced!

Please complete labs!



Review: Bigram Language Model Architecture

2

Embedding 
Lookup Σ 𝜎

“The”

“dog”

“barked”

“The”

“cat”

“meowed”

1

2

3

1

4

5

Probability 
of

each next 
word
given 

previous

“dog”

“barked”

“loudly”

“cat”

“meowed”

“softly”

inputs prediction



Review: Complete Trigram Language Model

3

inputs
“The”

“dog”

“The”

“cat”

“dog”

“was”

“cat”

“was”

1

2

1

5

2

3

5

3

Embedding 
Lookup

+ Concat
Σ 𝜎

Probability 
of

each next 
word
given 

previous

“was”

“barking”

“was”

“meowing”

prediction



Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

4



Size of Feed Forward bigram Model

5

Let’s look at bigram model and count the number of 
weights.

Embedding 
Lookup

“The”

“dog”

“barked”

“The”

“cat”

“meowed”

1

2

3

1

4

5

Probability of
each next word
given previous

“dog”

“barked”

“loudly”

“cat”

“meowed”

“softly”

inputs prediction



Size of Feed Forward bigram Model

6

To preform embedding lookup on our entire batch, we just need one 
embedding matrix of size: (vocab_sz, embedding_sz)

Embedding 
Lookup

“The”

“dog”

“barked”

“The”

“cat”

“meowed”

1

2

3

1

4

5

Embedding of each 
word in batch

ba
tc

h_
sz

embedding_szinputs



Size of Feed Forward bigram Model

7

Embedding of each 
word in batch

ba
tc

h_
sz

embedding_sz

Probability of
each next word
given previous

ba
tc

h_
sz

vocab_sz???

?
?
?

What size do we need the linear layer to be in order to map:
(batch_sz, embedding_sz) × (???, ???) → (batch_sz, vocab_sz)



Size of Feed Forward bigram Model

8

Embedding of each 
word in batch

ba
tc

h_
sz

embedding_sz

Probability of
each next word
given previous

ba
tc

h_
sz

vocab_szvocab_sz

em
be

dd
in

g_
sz

What size do we need the linear layer to be in order to map:
(batch_sz, embedding_sz) × (???, ???) → (batch_sz, vocab_sz)



Size of Feed Forward N-gram Model

9

So what happens in the N-gram case?

“The”

“dog”

“barked”

“The”

“cat”

“meowed”

inputs

“at”

“the”

“cars”

“all”

“the”

“furniture”

…

…

…

…

…

…

(N-1) words

Embedding 
Lookup + 
Concat

Probability of
each next word
given previous

“the”

“cars”

“on”

“the”
“furnitur

e”
“in”

prediction



Size of Feed Forward N-gram Model

10

Embedding lookup + Concatenation still requires only one 
embedding matrix of size: (vocab_sz, embedding_sz)

Embedding 
Lookup + 
Concat

“The”

“dog”

“barked”

“The”

“cat”

“meowed”

Concatenated embeddings of each 
sequence of (N-1) words in the batch

ba
tc

h_
sz

(N-1) × embedding_szinputs

“at”

“the”

“cars”

“all”

“the”

“furniture”

…

…

…

…

…

…

(N-1) words



Size of Feed Forward N-gram Model

11

But what happens to our feed forward layer?

Concatenated embeddings of 
each sequence of (N-1) 

words in the batch

ba
tc

h_
sz

(N-1) × embedding_sz

Probability of
each next word
given previous

ba
tc

h_
sz

vocab_sz???

?
?
?



Size of Feed Forward N-gram Model

12

It needs to be size: ((N-1) × embedding_sz, vocab_sz)
For every word, we add (embedding_sz × vocab_sz) more weights! 

Concatenated embeddings of 
each sequence of (N-1) 

words in the batch

ba
tc

h_
sz

(N-1) × embedding_sz

Probability of
each next word
given previous

ba
tc

h_
sz

vocab_szvocab_sz

(N
-1

) 
× 
em

be
dd

in
g_

sz

Can we see the problem now?



Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the 
linear layer becomes far too large.

13



Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the 
linear layer becomes far too large.

2. Using a fixed N creates problems with the flexibility of our model.

14



Lack of Flexibility with N-grams

15

We would like for our language model to be more aware of context when 
deciding on how many words in the past to consider as “relevant”.

For example, we can see that at some parts of the sentence below, smaller 
N-gram models should be sufficient to make predictions:

“The dog barked at one of the cats.”

(“The”, “dog”) → “barked”



16

We would like for our language model to be more aware of context when 
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of 
words may make it impossible to have any idea what should come next.

“The dog barked at one of the cats.”

(“at”, “one”, “of”, “the”) → ???

Lack of Flexibility with N-grams



17

We would like for our language model to be more aware of context when 
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of 
words may make it impossible to have any idea what should come next.

We want our model to recognize these patterns and dynamically adapt 
how it makes a prediction based on context.

“The dog barked at one of the cats.”

Lack of Flexibility with N-grams



Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the 
linear layer becomes far too large.

1. Using a fixed N creates problems with the flexibility of our model.

We need a solution that is both computationally cheap and more 
dynamic in terms of its memory of previously seen words.

18

Any questions?



New Approach

Let’s revisit the bigram model and see several iterations of prediction 
using a bigram model:

19

Bigram
Model

“The”

“dog”

Bigram
Model

“dog”

“was”

Bigram
Model

“was”

“barking”

...



New Approach

Ideally, we would like to be able to keep “memory” of what 
words occurred in the past. 

20

Bigram
Model

“The”

“dog”

Bigram
Model

“dog”

“was”

Bigram
Model

“was”

“barking”

...

Any ideas?



New Approach

What if we sequentially passed information from our previous 
bigram block into our next block?

21

Bigram
Model

“The”

“dog”

Bigram
Model

“dog”

“was”

...Bigram
Model

“was”

“barking”



New Approach
If we follow the information flow, we see that when predicting 
“barking”, we have some way of knowing that “dog” was 
previously observed:

22

Bigram
Model

“The”

“dog”

Bigram
Model

“dog”

“was”

Bigram
Model

“was”

“barking”

...



New Approach

In fact, we even have a way of knowing that “The” was 
observed!

23

Bigram
Model

“The”

“dog”

Bigram
Model

“dog”

“was”

Bigram
Model

“was”

“barking”

...



New Approach

We can represent this relationship using 
only one bigram block and connection that 
feeds from the output of the model back 
into the input.

We call this connection a recurrent 
connection.

We call the previous representation the 
“unrolled” representation.

24

Bigram
Model

prediction

input



Different views of recurrent models

Recurrent view Unrolled view

25

Bigram
Model

prediction

input

Bigram
Model

“The”

“dog”

Bigram
Model

“dog”

“was”

...Bigram
Model

“was”

“barking”



Recurrent Neural Network (RNN)

Recurrent Neural Networks are networks in the form of a directed 
cyclic graph. 

They pass previous state information from previous computations to 
the next.

They can be used to process sequence data with relatively low model 
complexity when compared to feed forward models.

The block of computation that feeds its own output into its input is 
called the RNN cell.
Let’s see how we can build one! 26



RNN Cell Architecture

27

Embedding of word xt

Previous State st-1

At each step of our RNN, we 
will get an input word, and a 
state vector from the previous 
cell.

RNN at time t

“dog”

state for (“the”)



RNN Cell Architecture

28

Embedding of word xt Previous State st-1

At each step of our RNN, we 
will get an input word, and a 
state vector from the previous 
cell.

We then concatenate the 
embedding and state vectors.

RNN at time t

“dog”

state for (“the”)



RNN Cell Architecture

29

At each step of our RNN, we 
will get an input word, and a 
state vector from the previous 
cell.

We then concatenate the 
embedding and state vectors.

We use a fully connected layer 
to compute the next state

RNN at time t

Embedding of word xt Previous State st-1

FCs

Current State st

“dog”



RNN Cell Architecture

30

Embedding of word xt Previous State st-1

FCs

Current State st

At each step of our RNN, we 
will get an input word, and a 
state vector from the previous 
cell.

We then concatenate the 
embedding and state vectors.

We use a fully connected layer 
to compute the next state

We use another connected 
layer to get the output.

FCo

Output ot

RNN at time t

“dog”

“was”



RNN Cell Architecture

We can represent the 
RNN in with the 
following equations:

31

Embedding of word xt Previous State st-1

FCs

Current State st

FCo

Output ot

RNN at time t



RNN Cell Architecture

We can represent the 
RNN in with the 
following equations:

32

Embedding of word xt Previous State st-1

FCs

Current State st

FCo

Output ot

RNN at time t

Nonlinear activations 
(e.g. sigmoid, tanh)

Any questions?



RNN Cell Architecture

We can represent the 
RNN in with the 
following equations:

33

This brings up an immediate question: what is 𝒔𝟎?

Typically, we initialize 𝑠" to be a vector of zeros
(i.e. “initially, there is no memory of any previous 
words”)



Training RNNs

We can calculate the cross entropy loss just as before since for any 
sequence of input words (x1, x2,…, xt), we know the true next word 
xt+1

34

RNN 
Cell

o1

x1

s0
RNN 
Cell

x2

o2

RNN 
Cell

xt

ot

... Loss(ot, xt+1)



Training RNNs

But what happens when we differentiate the loss and backpropagate?

35

RNN 
Cell

o1

x1

s0
RNN 
Cell

x2

o2

RNN 
Cell

xt

ot

...



Training RNNs

Not only do our gradients for ot depend on xt, but also on all of the 
previous inputs. 
We call this backpropagation through time.

36

RNN 
Cell

o1

x1

s0
RNN 
Cell

x2

o2

RNN 
Cell

xt

ot

...

For Details: https://d2l.ai/chapter_recurrent-neural-networks/bptt.html#analysis-of-gradients-in-rnns

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html


Training RNNs

With this architecture, we can run the RNN cell for as many steps as we 
want, constantly accumulating memory in the state vector. 

37

RNN 
Cell

o1

x1

s0
RNN 
Cell

x2

o2

RNN 
Cell

x10,000

o10,000

... ...

But at what point do we stop and calculate the loss/update?



Training RNNs

Solution: We define a new hyperparameter called window_sz.

We now chop our corpus into sequences of words of size window_sz

The new shape of our data should be:
(batch_sz, window_sz, embedding_sz)

Each example in our batch is a “window” of window_sz many words. 
Since each word is represented as an embedding_sz, that is the last 
dimension of the data. 38



Training RNNs

Now that every example is a window or words, we can run the RNN till 
the end of that window, and compute the loss for that specific window 
and update our weights

39

RNN 
Cell

o1

x1

s0
RNN 
Cell

x2

o2

RNN 
Cell

Xwindow_sz-1

Owindow_sz-1

...



Does RNN fix the limitations of the N-gram 
model?

1. Number of of weights not dependent on N
2. State gives flexibility to choose context 

from near or far

40

RNN cell

prediction

input

RNN 
cell

“The”

“dog”

RNN 
cell

“dog”

“was”

...RNN 
cell

“was”

“barking”

“The dog was barking at one of the cats.”

Any questions?



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops:

prev_state = Zero vector
for i from 0 to window_sz:
 state_and_input = concat(inputs[i], prev_state)
 current_state = fc_state(state_and_input)
 outputs[i] = fc_output(current_state)
 prev_state = current_state
return outputs

41



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops. 

There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

42



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops. 

There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

43

The size of our output vectors



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops. 

There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

44

The activation function to be used in the FC 
layers inside of the RNN Cell



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops. 

There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

45

• If True: calling the RNN on an input sequence 
returns the whole sequence of outputs + final 
state output

• If False: calling the RNN on an input sequence 
returns just the final state output (Default)

Any intuition why we would want 
return_sequences to be TRUE?



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops. 

There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

46

Usage:

RNN = SimpleRNN(10) # RNN with 10-dimensional output vectors

Final_output = RNN(inputs) # inputs: a [batch_sz, seq_length, embedding_sz] tensor



RNNs in Tensorflow

47

inputs: a [batch_sz, 
seq_length, embedding_sz] 
tensor

What is the size of 
(a) output 
(b) whole_sequence_output?simple_rnn = tf.keras.layers.SimpleRNN(4,

return_sequences=True)

whole_sequence_output = simple_rnn(inputs)

Any questions?



RNNs are a marked improvement 
over previous language models 
we’ve seen

48



But what are the implications 
when language models get really 
good?

49



Like really, really, really good

50



GPT-3

51



GPT-3

Background:
- Attention- and transformer-based model (We’ll be discussing the 

details of these models next week in class, so stay tuned!)

- First Described by OpenAI in May 2020

52



ChatGPT

53

Background:
- Attention- and transformer-based model + Reinforcement Learning 

(We’ll cover this at the end of the course!)

- Launched in November 2022



These models are dangerous. Why?
Example1: Impacts of fake news and bot 
networks
- What if fake news didn’t even have to 

be written by humans?
- Could this significantly undermine 

trust in written sources?

54



Other Limitations

Example 2: “While we’ve made efforts to make the model refuse 
inappropriate requests, it will sometimes respond to harmful 
instructions or exhibit biased behavior.”

55https://openai.com/blog/chatgpt



Other Limitations
Example 3: “ChatGPT sometimes writes plausible-sounding but 
incorrect or nonsensical answers”

56
https://openai.com/blog/chatgpt

OpenAI will not make GPT-3/ChatGPT open 
source— instead, they have released an API 
and limits the number of people allowed to try 
the actual model.



Recap Size of weights dependent on N

Limited Flexibility

Recurrent connection can help

Limitations of N-gram 
models

RNN cell architecture

Backprop through time

RNNs in Tensorflow

RNNs

Bigram
Model

prediction

input


