CSCl 1470/2470
Spring 2024

Ritambhé_ra Singh

March 01, 202/4}7 \

_ Deep Learning Days — May 6 and 7, 2024
SO e Project teams announced!

Please complete labs!

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

inputs

Review: Bigram Language Model Architecture

prediction

“Th e ”

“dog”

“dog”

“barked”

“barked”

“loudly”

“Th e ”

13 C at”

(13 C at”

“meowed”

“meowed”

“Softly”

2

Review: Complete Trigram Language Model

inputs
“The” “dog”
“dog” “was”
“The” “cat”
“cat” “was”

prediction

“was”

“barking”

“was”

“meowing”

Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

Size of Feed Forward bigram Model

Let’s look at bigram model and count the number of

weights.

inputs prediction

“The” “do g ”

“dog” “barked”
“barked” “loudly”

“The” ; “cat”

“cqt” “meowed”
“meowed” “softly”

Size of Feed Forward bigram Model

To preform embedding lookup on our entire batch, we just need one
embedding matrix of size: (vocab_sz, embedding sz)

inputs

“The”

“dog”

“barked”

“The”

“cat”

“meowed”

\ 4

Embedding
Lookup

embedding sz

Embedding of each
word in batch

batch sz

Size of Feed Forward bigram Model

What size do we need the linear layer to be in order to map:
(batch_sz, embedding sz) x (???, ???) » (batch sz, vocab sz)

2??
embedding sz vocab_sz

batch sz

batch sz

Size of Feed Forward bigram Model

What size do we need the linear layer to be in order to map:
(batch_sz, embedding sz) x (???, ???) » (batch sz, vocab sz)

vocab sz

embedding sz vocab_sz

batch_sz
embedding sz

batch sz

Size of Feed Forward N-gram Model

So what happens in the N-gram case?

inputs prediction
“The” .. “at” “the”
“dog” . “the” “cars”
“barked” | ... “cars” “on”
“The” .. “all” : “the”
“cat” . “the” “fur::,i tur
“meowed” | ... | “furniture” “in”
\ Y J

(N-1) words

Size of Feed Forward N-gram Model

Embedding lookup + Concatenation still requires only one
embedding matrix of size: (vocab_sz, embedding sz)

inputs
“The” “at”
“dog” “the”
“barked” “cars”
“The” “all” '
“cat” “the”
“meowed” “furniture”
\ Y J

(N-1) words

Embedding
Lookup +
Concat

(N-1) x embedding_ sz

v

Concatenated embeddings of each
sequence of (N-1) words in the batch

batch sz

batch sz

Size of Feed Forward N-gram Model

But what happens to our feed forward layer?

???
(N-1) x embedding_sz

vocab_sz

11

batch sz

batch sz

[[Gan we sce the problem now? |
Size of Feed Forward N-gram Model

It needs to be size: ((N-1) x embedding sz, vocab sz)
For every word, we add (embedding sz x vocab_sz) more weights!

vocab_sz

(N-1) x embedding sz vocab sz

(N-1) x embedding sz
batch sz

Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the
linear layer becomes far too large.

Limitations of the N-gram model

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the
linear layer becomes far too large.

2. Using a fixed N creates problems with the flexibility of our model.

Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

For example, we can see that at some parts of the sentence below, smaller
N-gram models should be sufficient to make predictions:

“The dog barked at one of the cats.”

(“The”, “dog” - “barked”

15

Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of
words may make it impossible to have any idea what should come next.

“The dog barked at one of the cats.”

(“at”, “One”, “Of”, “the”) - ???

16

Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of
words may make it impossible to have any idea what should come next.

“The dog barked at one of the cats.”

We want our model to recognize these patterns and dynamically adapt
how it makes a prediction based on context.

17

.. . A”quut;}tic;?
Limitations of the N-gram model -

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the
linear layer becomes far too large.

1. Using a fixed N creates problems with the flexibility of our model.

We need a solution that is both computationally cheap and more
dynamic in terms of its memory of previously seen words.

New Approach

Let’s revisit the bigram model and see several iterations of prediction

using a bigram model:

“dog”

Bigram
Model

“The 7

(13 7

was

“barking”

Bigram
Model

Bigram
Model

7

“dog

(13 2

was

19

New Approach

ldeally, we would like to be able to keep “memory” of what

words occurred in the past.

“dog”

Any ideas?

(13 7

was

“barking”

Bigram
Model

Bigram
Model

Bigram
Model

“The 7

7

“dog

(13 ”

was

20

New Approach

What if we sequentially passed information from our previous
bigram block into our next block?

“dog” “waS” “ba,rking”

Bigram Bigram Bigram
__________________________________ > © o o

Model Model Model

“The” “dog” “was ”

21

New Approach

If we follow the information flow, we see that when predicting
“barking”, we have some way of knowing that “dog” was
previously observed:

“dog”

Bigram
Model

“The 7

(13 7

was

Bigram
Model

“barking”

[

___»

7

“dog

Bigram
Model

(13 2

was

22

New Approach

In fact, we even have a way of knowing that “The” was

observed!

“dog”

|

“Th e ”

(13

was

”

“dog

”

“barking”

(13 ”

was

23

New Approach

We can represent this relationship using
only one bigram block and connection that
feeds from the output of the model back
into the input.

We call this connection a recurrent
connection.

We call the previous representation the
“unrolled” representation.

prediction

Bigram
Model

input

Different views of recurrent models

Recurrent view

prediction

Bigram
Model

input

“dog”

Bigram
Model

“The”

Unrolled view

“was ”

Bigram
Model

“dog”

“barking”

A

Bigram
Model

A

“was”

25

Recurrent Neural Network (RNN)

Recurrent Neural Networks are networks in the form of a directed
cyclic graph.

They pass previous state information from previous computations to
the next.

They can be used to process sequence data with relatively low model
complexity when compared to feed forward models.

The block of computation that feeds its own output into its input is
called the RNN cell.

Let’s see how we can build one!

. state for (“the”)
RNN Cell Architecture

RNN attime t

At each step of our RNN, we
will get an input word, and a

state vector from the previous
cell.

Previous State s, _,

Embedding of word x,

|

“dog

” 27

state for (“the”)

RNN Cell Architecture

RNN attime t

At each step of our RNN, we
will get an input word, and a

state vector from the previous
cell.

We then concatenate the
embedding and state vectors.

Embedding of word X, Previous State s, ,

28
”

“dog

RNN Cell Architecture

RNN at time t
At each step of our RNN, we
will get an input word, and a Current State s,
state vector from the previous T
cell.

FC,

We then concatenate the
embedding and state vectors.
We use a fully connected layer
to Compute the next State Embedding of word x, Previous State s, _;

”

“dog

RNN Cell Architecture

“was”

I RNN attime t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

We then concatenate the
embedding and state vectors.

We use a fully connected layer
to compute the next state

Output o,

|

FC,

Current State s,

|

FC,

Embedding of word x,

Previous State s, _;

We use another connected
layer to get the output.

“dog

”

RNN Cell Architecture

I RNN attime t

We can represent the
RNN in with the
following equations:

St = p((et,st-l)W} + b;)

O = J(StWo + bo)

Output o,

|

FC,

Current State s,

|

FC,

Embedding of word x,

Previous State s, _;

|

31

RNN Cell Architecture

I RNN attime t

We can represent the
RNN in with the
following equations:

St = P((et»st—1)W;~ + b;)

O = J(StWo + bo)

Any questions?

n?9

Output o,

|

FC,

Current State s,

|

FC,

Embedding of word x,

Previous State s, _;

-'
€3

|

32

RNN Cell Architecture

We can represent the

_ _ — : . S——— >
RNN in with the This brings up an immediate question: what is s

following equations:
Typically, we initialize sy to be a vector of zeros

St = P((et, St_1)W;~ + b,) (i.e. “initially, there is no memory of any previous
words”)

O = J(StWo + bo)

33

Training RNNs

We can calculate the cross entropy loss just as before since for any
sequence of input words (X;, X5,.., X¢), we know the true next word

Xt+1

0,

|

0,

|

RNN
Cell

RNN
Cell

O¢

—> e o o —

|

=

RNN
Cell

Loss(0¢, Xes1)

Training RNNSs

But what happens when we differentiate the loss and backpropagate?

=N

o
ow

O¢

Loss (0, Xeuq)

35

Training RNNSs

Not only do our gradients for o, depend on X4, but also on all of the

previous inputs.

We call this backpropagation through time.
o

1

|

RNN
Cell

1

X1

For Details: https://d2l.ai/chapter recurrent-neural-networks/bptt.html#analysis-of-gradients-in-rnns

0, O+
RNN RNN
Cell ' e Cell
Xz Xt

oW

LOSS (04, Xiyq)

36

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html

Tra | n | n g R N N S But at what point do we stop and calculate the loss/update?

With this architecture, we can run the RNN cell for as many steps as we
want, constantly accumulating memory in the state vector.

of of 010,000
) RNN : RNN . RNN L
Se Cell Cell Cell

X1 X2 X10,000

Training RNNs

Solution: We define a new hyperparameter called window sz.
We now chop our corpus into sequences of words of size window sz

The new shape of our data should be:
(batch sz, window sz, embedding sz)

Each example in our batch is a “window” of window sz many words.
Since each word is represented as an embedding sz, thatis the last
dimension of the data.

Training RNNs

Now that every example is a window or words, we can run the RNN till
the end of that window, and compute the loss for that specific window
and update our weights

of OIZ OIwindow_sz-l
; RNN | RNN o RNN
0 Cell Cell Cell

X3 X Xwindow_sz-l

Any questions?

Does RNN fix the limitations of the N-gram 222

model?
prediction
1. Number of of weights not dependent on N
2. State gives flexibility to choose context pommmenonee i
from near or far ’ '
“The dog was barking at one of the cats.”|[it il
“dog” “was” “barking”
RNN | | RNN | | RNN R
cell cell cell
input

“The” “dOg” “was” 40

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops:

prev_state = Zero vector

for 1 from 0 to window sz:
state_and input = concat(inputs[i], prev_state)

current _state

outputs[i]
prev_state
return outputs

= fc_state(state and input)
fc_output(current state)
current_state

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

The size of our output vectors

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

/.

The activation function to be used in the FC
layers inside of the RNN Cell

RNNs in Tensorflow

Any intuition why we would want
return_sequences to be TRUE?

RNNs can be built from scratch using Python for loops.

There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

|

|

RNN
Cell

RNN
Cell

|

ow:i.ndow_sz -1

|

RNN
Cell

|

Xwindow_sz -1

.

If True: calling the RNN on an input sequence
returns the whole sequence of outputs + final
state output

If False: calling the RNN on an input sequence
returns just the final state output (Default)

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

Usage:
RNN = SimpleRNN(10) # RNN with 1©-dimensional output vectors
Final output = RNN(inputs) # inputs: a [batch sz, seq length, embedding sz]| tensor

46

Any questions?

RNNs in Tensorflow

inputs: a [batch sz,
inputs = np.random.random([32, 10, 8]).astype(np.float32) seq_length, embedding sz]
simple_rnn = tf.keras.layers.SimpleRNN(4) tensor

output = simple_rnn(inputs)

Join at menticom | use code 83729615

What is the size of

(a) output

simple rnn = tf.keras.layers.SimpleRNN (4, (b) whole_sequence_output?
return sequences=True)

whole sequence output = simple rnn(inputs)

47

RNNs are a marked improvement
over previous language models
we’'ve seen

But what are the implications
when language models get really
good?

Like really, really, really gooad

GPT-3

GPT-3, explained: This new language Al is
uncanny, funny — and a big deal

Computers are getting closer to passing the Turing Test.

By Kelsey Piper | Aug 13,2020, 9:50am EDT

f W (7 sHare

\
L e~

/ n

OpenAl co-founder and chair Greg Brockman, OpenAl co-founder and CEO Sam Altman, and TechCrunch news editor Frederic

= : w A
g I L Sl |

Lardinois during TechCrunch Disrupt San Francisco 2019. | Steve Jennings/Getty Images for TechCrunch

51

GPT-3

Background:

- Attention- and transformer-based model (We’ll be discussing the
details of these models next week in class, so stay tuned!)

First Described by OpenAl in May 2020

ChatGPT

Background:

- Attention- and transformer-based model + Reinforcement Learning
(We'll cover this at the end of the course!)

Launched in November 2022

hese models are dangerous. Why?

Examplel: Impacts of fake news and bot

‘ii You

networks Write a news piece about Pepper the penguin who was granted knighthood
- What if fake news didn’t even have to

be written by humans?
- Could this significantly undermine
trust in written sources?

ChatGPT

Title: Pepper the Penguin Knighted for Exceptional Service to Conservation

Date: February 28, 2024

By: [Your Name], Staff Writer

In a heartwarming ceremony that captivated the world, Pepper the Penguin has been granted
knighthood in recognition of his extraordinary dedication to conservation efforts and raising
awareness about the plight of his species. The conferral of this prestigious honor marks a historic

moment in the realm of wildlife preservation.

Pepper, a beloved resident of Antarctica, has long been a symbol of resilience and determination

in the face of environmental challenges. His tireless advocacy for penguin conservation and his

charismatic presence have endeared him to people around the globe, inspiring countless

individuals to take action to protect endangered species and their habitats.

54

Other Limitations

Example 2: “While we’ve made efforts to make the model refuse
inappropriate requests, it will sometimes respond to harmful
instructions or exhibit biased behavior.”

@he Washington Post
D k

emocracy Dies in Darkness

TECH HelpDesk Atrtificial Intelligence Internet Culture Space Tech Policy

ChatGPT leans liberal, research shows

Chatbots are ingrained with political biases picked up from their training data — which in most cases is unfiltered text
from the web

9 By Gerrit De Vynck

Updated August 16, 2023 at 7:21 p.m. EDT | Published August 16, 2023 at 7:01 p.m. EDT

https://openai.com/blog/chatgpt 55

Other Limitations

Example 3: “ChatGPT sometimes writes plausible-sounding but
incorrect or nonsensical answers”

OpenAl will not make GPT-3/ChatGPT open
source— instead, they have released an API
and limits the number of people allowed to try
the actual model.

https://openai.com/blog/chatgpt

Recap

Limitations of N-gram
models

RNNs

C I Size of weights dependent on N I

Limited Flexibility |

I Recurrent connection can help I

RNN cell architecture I

Backprop through time I

RNNSs in Tensorflow I

prediction

A

input

