ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”
“They went to the grocery store and bought... bread? milk? rock?

Generating artificial sentences: Here each word is a discrete unit; predicting the next part of the sequence means predicting words
Review: Natural Language Prediction Tasks

Input: X

“The story telling was erratic and, at times, slow”

“Loved the diverse cast of this movie”

Function: f

Output: Y

“Good review?”

X

✓
Machine Translation (MT)

Software that transforms text in a source language into text in a target language

Hello world × Bonjour le monde
Why is this an interesting problem to solve?

• **Complex:** languages evolve rapidly and don’t have a clear and well-defined structure
 • Example of language change: “awful” originally meant “full of awe”, but is now strictly negative

• **Important:** billions per year spent on translation services
 • >CA$2.4 billion spent per year by Canadian government
 • >£100 million spent per year by UK government
• Original approach: create rule-based MT programs

• *Why doesn’t this work?*
Why rule-based MT doesn’t work (1/3)

Basic rules are regularly broken

Example rule: in English, adjectives come before nouns
“black cat”, “large building”, etc.

Exception: “something”
“something black”, “something large”, etc.
Why rule-based MT doesn’t work (2/3)

Too many language pairs: Google Translate has 133 languages, or 8,778 pairs
Thus would require 8,778 sets of rules to cover all that Google Translate does
Why rule-based MT doesn’t work (3/3)

Translations depend on context, and words shouldn’t always be translated literally

<table>
<thead>
<tr>
<th>Spanish</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me llamo John</td>
<td>I call me John</td>
</tr>
</tbody>
</table>

Apertium (rule-based)
Why rule-based MT doesn’t work (3/3)

Translations depend on context, and words shouldn’t always be translated literally

<table>
<thead>
<tr>
<th>Spanish</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apertium (rule-based)</td>
<td>Me llamo John</td>
</tr>
<tr>
<td>Google Translate</td>
<td>Me llamo John</td>
</tr>
</tbody>
</table>
• Original approach: create rule-based MT programs (doesn’t work well!)

• **Deep learning can help!**
 • Instead of telling the computer rules, it could learn them for itself
Parallel Corpora

• We need pairs of equivalent sentences in two languages, called parallel corpora
Canadian Hansards

- Hansards are transcripts of parliamentary debates
- Canada’s official languages are English and French, so everything said in parliament is transcribed in both languages
Canadian Hansards: Examples

<table>
<thead>
<tr>
<th>English</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>What a past to celebrate.</td>
<td>Nous avons un beau passé à célébrer.</td>
</tr>
<tr>
<td>We are about to embark on a new era in health research in this country.</td>
<td>Le Canada est sur le point d'entrer dans une nouvelle ère en matière de recherche sur la santé.</td>
</tr>
</tbody>
</table>
Canadian Hansards

• We can use this as a dataset for MT!

• Not perfect:
 • *Translations aren’t literal*: in the example, “this country” is translated to “Le Canada”
 • *Biased in style*: not everyone speaks like politicians in parliamentary debate
 • *Biased in content*: some topics are never discussed in parliament
Other parallel corpora

• Europarl, a parallel corpus of 21 languages used in the European Parliament
• EUR-Lex, a parallel corpus of 24 languages used in EU law and public documents
• Japanese-English Bilingual Corpus of Wikipedia's Kyoto Articles
Problems with parallel corpora

• Expensive to produce

• Tend to be biased towards particular types of text – e.g. government documents containing formal language

• Translations aren’t necessarily literal - e.g. “this country” -> “Le Canada”

• Parallel corpora are necessary, but never perfect

Any questions?
Implementing learning-based MT
Example from Hansards

• For example, take the first entry in Hansard’s:

 edited hansard number 1

 hansard révisé numéro 1

We have our dataset!
LM approach

• Language modelling works on a word-by-word basis, taking only previous words as input

\[P(w_{t,i}) = P(w_{t,i} \mid w_{s,i-1}, w_{s,i-2}, \ldots, w_{s,0}) \]

• Where \(w_{t,i} \) is the \(i^{th} \) word in the target sentence, and \(w_{s,i} \) is the \(i^{th} \) word in the source sentence

Will it work for MT task?
Why our LM approach doesn’t work for MT

• Language modelling works on a word-by-word basis, taking only previous words as input

\[P(w_{t,i}) = P(w_{t,i} \mid w_{s,i-1}, w_{s,i-2}, \ldots, w_{s,0}) \]

• Where \(w_{t,i} \) is the \(i^{th} \) word in the target sentence, and \(w_{s,i} \) is the \(i^{th} \) word in the source sentence

• However, it is not a given that the information we need comes in the preceding words

• The order and length of the source and target sentences are not necessarily equal
Example from Hansards

• For example, take the first entry in Hansard’s:

 edited hansard number 1

 hansard révisé numéro 1
Further examples

French: “Londres me manque”
Naive translation: “London I miss”
Correct translation: “I miss London”

French: “Je viens de partir”
Naive translation: “I come of to go”
Correct translation: “I just left”
Sequence to Sequence (seq2seq)

Thus, we cannot simply use the previous words – we need to *summarize the source sentence first*

This is called *sequence to sequence learning*, or *seq2seq*
Sequence to Sequence (seq2seq)

Instead of:

\[P(w_{i,t}) = P(w_{i,t} \mid w_{i-1,s}, w_{i-2,s}, \ldots, w_{0,s}) \]

Let’s do:

\[P(w_{i,t}) = P(w_{i,t} \mid E_s, w_{i-1,t}, w_{i-2,t}, \ldots, w_{0,t}) \]

Where \(E_s \) is a summary, or embedding, of the sentence taken from the source language, and \(w_i \) is the \(i^{th} \) word of the sentence in the target language.
What will the neural net look like?

Origin of the encoder/decoder terminology: information theory
• The encoder “compresses” the source sentence into a compact “code”
• The decoder recovers the sentence (but in the target language) from this code
What will the neural net look like?

Source sentence → **Encoder** → Sentence embedding (E_S)
Encoder

• To generate the sentence embedding, we need an encoder
• Use an LSTM
• Feed in the source sentence
• Take the final LSTM state as the sentence embedding
• This will be a *language-agnostic* representation of the sentence
 • i.e. it will represent the *meaning* of the sentence without being tied to any particular language
Encoder architecture

LSTM

Final LSTM state as sentence embedding

hansards révisé numéro 1 STOP
What will the neural net look like?

Source sentence → Encoder → Sentence embedding (E_s) → What now?
What will the neural net look like?

Source sentence → Encoder → Sentence embedding (E_s) → Decoder → Target sentence

Any ideas?
Decoder

• We now have a sentence embedding representing the meaning of the source sentence
• Now, let’s generate a sentence in the target language with the same meaning
• Use an LSTM again, **with the sentence embedding** as its initial hidden state
• The rest is just like language modeling:
 • Input to the LSTM is the previous word from the target sentence
 • Take each LSTM output and put it through a fully connected layer
 • Softmax to convert to probability distribution over next word in target language
Decoder architecture

Sentence embedding

Decoder LSTM

Dense layer

revised hansards number 1 STOP

STOP revised hansards number 1

STOP revised hansards number 1
Putting it all together...
Any questions?
Architecture variations

• No one correct answer on how to produce the sentence embedding

• One improvement: instead of taking the final state as the sentence embedding, sum the LSTM states

• Advantage: Less bias towards later words
$E_s = \text{final LSTM state}$
New:

\[E_s = \text{sum of LSTM states} \]
Evaluating MT models

i.e. How do we know if a translation is good?
Precision and Recall

relevant elements

false negatives true negatives
true positives false positives

retrieved elements

How many retrieved items are relevant?

Precision = \frac{\text{true positives}}{\text{false positives} + \text{true positives}}

How many relevant items are retrieved?

Recall = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}

https://en.wikipedia.org/wiki/Precision_and_recall
BLEU

- **Bi-Lingual Evaluation Understudy**

- Based on *precision*:
 fraction of words generated that are in a given ground-truth ("correct" translated sentence)
 - Or, more commonly, that are in one of several given correct translations

- Instead of naïve precision (per word), use n-grams of each sentence
 - For example, in “Sam saw the black cat”, check for “Sam saw the”, “saw the black”, etc. instead of “Sam”, “saw”, etc.
ROUGE

• Recall-Oriented Understudy for Gisting Evaluation

• Based on recall:
 fraction of words in the correct translated sentence that are generated
 • Or, more commonly, that are in one of several given correct translations

• Like BLEU, also looks for n-grams instead of individual words
Calculate BLEU and ROGUE scores (naively!)

Generated: “BLEU prefers shorter sentences”
Ground-Truth: “BLEU prefers shorter sentences more than ROUGE”

Generated: “BLEU prefers shorter sentences more than ROUGE”
Ground-Truth: “BLEU prefers shorter sentences”
Do we prefer BLEU or ROUGE?

Generated: “BLEU prefers shorter sentences”
Ground-Truth: “BLEU prefers shorter sentences more than ROUGE”

BLEU score:
ROUGE score:
Do we prefer BLEU or ROUGE?

Generated: “BLEU prefers shorter sentences more than ROUGE”
Ground-Truth: “BLEU prefers shorter sentences”

BLEU score:
ROUGE score:
Both are biased

- BLEU favors shorter sentences
- ROUGE favors longer sentences

What should we do?
Both are biased

• BLEU favors shorter sentences
• ROUGE favors longer sentences

• So, let’s use a metric that combines both BLEU and ROUGE
 • i.e. a single metric that tries to assess *both* precision and recall (a common thing to do in information retrieval)
F₁ score

• BLEU favors shorter sentences
• ROUGE favors longer sentences
• F₁ score is the harmonic mean of BLEU and ROUGE
• 0 ≤ F₁ ≤ 1
• The higher the F₁ score, the better the translation

\[
F_1 = \frac{2}{\frac{1}{\text{BLEU}} + \frac{1}{\text{ROUGE}}} = \frac{2(\text{BLEU} \cdot \text{ROUGE})}{\text{BLEU} + \text{ROUGE}}
\]
Why combine using the harmonic mean?

• More appropriate than arithmetic mean for *rate* quantities
 • Precision and recall are both rates (i.e. percentage of matching words)

• More info on why: *On Average, You’re Using the Wrong Average*

• Added benefit: punishes extreme values --- a BLEU score of 0 and a ROUGE score of 1 would result in an F_1 score of 0, not 0.5
 • Note that it’s not actually possible for one sentence to have both a BLEU of 0 and a ROUGE of 1, but you get the idea...
Problems with F_1

• Does the “correct” translation even exist?
 • Sam saw a cat which was black
 • Sam saw a black thing which was a cat
 • A black cat was seen by Sam
 • Sam saw a black cat

• All above sentences are valid – but some are more or less “natural”

• F_1 cannot know this
 • And it may give high scores to unnatural translations if they have high word overlap with known good translations!
Problems with F_1
Morphologically rich languages

• Here are two translations of “Her village is large” into Shipibo, which is spoken in Peru:

 Jawen jemara ani iki
 Jawen jemaronki ani iki

• Sentence 1: The speaker is claiming the village is large because they have seen it with their own eyes
• Sentence 2: The speaker is claiming the village is large because they were told so by someone else
Problems with F_1

No understanding of meaning

Target: “F1 score is a flawed metric for evaluating machine translation systems”

Generated 1: “F1 score is an imperfect metric for evaluating machine translation systems”

F_1 score: 0.599

Generated 2: “F1 score is a great metric for evaluating machine translation systems”

F_1 score: 0.710

Is this accurate?
Human evaluation

• The alternative is to have humans evaluate each translation
• However, this is very time consuming
• Google Translate attempts this with its “Translate Community” – volunteers who rate translations and suggest improvements
Recap

Can train DL models using Parallel Corpora

Seq-2-seq prediction (encoder-decoder)

Various applications

Machine translation

BLEU

ROGUE

F1 SCORE

Evaluation

\[F_1 = \frac{2}{\frac{1}{\text{BLEU}} + \frac{1}{\text{ROGUE}}} = \frac{2(\text{BLEU} \cdot \text{ROGUE})}{\text{BLEU} + \text{ROGUE}} \]
Extra: Other Applications of seq2seq

- **Text summarization**

- **Source:** Long text pessage
- **Target:** Shortened version of input text passage

Source Text: *Peter and Elizabeth took a taxi to *Dance* the night *away* in the city.*

While in the party, *Elizabeth* collapsed and was rushed to the *hospital.*

Summary: *Elizabeth was hospitalized after attending a party with Peter.*

https://blog.floydhub.com/gentle-introduction-to-text-summarization-in-machine-learning/
Extra: Other Applications of seq2seq

- Text summarization
- **Chatbots**

 - Source: user question
 - Target: chatbot response

https://www.yodlee.com/blog/chatbots-in-banking/
Extra: Other Applications of seq2seq

• Text summarization
• Chatbots
• Part of speech tagging

• Source: natural language sentence
• Target: part-of-speech labels for each word in the input sentence

https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31
Extra: Other Applications of seq2seq

• Text summarization
• Chatbots
• Part of speech tagging
• **Speech recognition**

• Input: sequence of audio samples
• Output: sequence of text words
Extra: Other Applications of seq2seq

- Text summarization
- Chatbots
- Part of speech tagging
- Speech recognition
- **Speech generation**

- Input: sequence of text words
- Output: sequence of audio samples

- [Google Cloud Text to Speech](https://cloud.google.com/text-to-speech)