CSCl 1470/2470
Spring 2024

Ritamb_hé_ra Singh

March 11, 202/

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

revised hansards number 1 STOP

' Dense layer
l

—-— e e o - o e . - e . . —-— e e . - e

STOP revised hansards number 1

Encoder LSTM

Final LSTM state
as sentence
embedding

hansards révisé NUMEro 1 STOP

New: revised hansards number 1 STOP

Es=sumof LSTM r-J------}F-----f} -----_ L ---- it
states

Sum of LSTM
states as
sentence

embedding L — _‘ ______ T ______ ‘ _______ 1 _______ ‘ o

STOP revised hansards number 1

Decoder LSTM

Encoder LSTM

hansards révisé NUMEro 1 STOP

This idea of passing each cell of the revised hansards number
decoder a weighted sum of the
encoder states is called attention.

|
Different words in the output “pay : i Dense
attention” to different words in the | !
input e el Bl Il - =4
il Pt LY
|
| Decoder
|
STOP revised hansards number
= = =1
|
|
' Encoder
|
|

hansards révisé NnuUMéro 1 STOP

Review: “Attention Is All You Need”

A 2017 paper that introduced the Transformer model for machine translation
* Has no recurrent networks!

* Only uses attention

Motivation:

* RNN training is hard to parallelize since the previous word must be processed before next word
* Transformers are trivially parallelizable

* Even with LSTMs / GRUs, preserving important linguistic context over very long sequences is
difficult

* Transformers don’t even try to remember things (every step looks at a weighted combination of all
words in the input sentence)

Review: Transformer Model Overview

e The Transformer model breaks

down into Encoder and Decoder
blocks.

« Ata high level, similar to the
seq2seq architecture we've seen
already...

« ..butthere are no recurrent nets
inside the Encoder and Decoder
blocks!

KF

\S

ENCODERS

DECODERS

Review: Transformer Model Overview

am a student

The Transformer model breaks = ! N
down into Encoder and Decoder ENCODER DECODER
blocks. N)) d
4 N
ENCODER DECODER
At a high level, similar to the . ry Y g
seq2seq architecture we've seen i ENCODER DECODER)
already... . Y . .
{ Y
ENCODER DECODER
...but there are no recurrent nets \ - - -
inside the Encoder and Decoder 2 k
ENCODER DECODER
blocks! . - - y
a2)
ENCODER DECODER
For better performance, often \ -)]

stack multiple Encoder and

Decoder blocks (deeper network) fe

I

suis étudiant

Transformer Model Overview

* Let's look at what goes on inside

one of these Encoder blocks

A

(ENCODER)
7Y

Encoder Block Map
N

These per-word output [EI:TED
vectors are analogous to the \
LSTM hidden states from the

seq2seq2 model

« They should capture “what
information about the input
sentence is relevant to
translating this word?”

Words in input sentence ——

Encoder Block Map

\C

)

Encoder block breaks down into

T
rv [

A

T
r- I

A

two main parts: Self-Attention, and 7
Feed Forward layers.

Feed Forward
Neural Network

T

2
T

Feed Forward
Neural Network

T

AN
T

Self-Attention

T ~/

A
| 1
x+ [T x [
Thinking Machines

10

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

\C

Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Self-Attention layer is applied to

each word individually. —

)

r+ [r [
7 I I N
Feed Forward Feed Forward
Neural Network Neural Network
Self-Attention
x1 [x2 [T
Thinking Machines

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

11

Encoder Block Map

* Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

« Self-Attention layer is applied to

each word individually.

Let’s revisit self-attention in detail!

—

T
LT LT

1

(

Feed Forward

Neural Networkj

T
LT

1

(

Feed Forward

Neural Networkj

1 1
1 1
1 1

\lx’lﬂHlaﬂHg_j]

12

Review: Attention types

exp(score(s;—1, h;))
>i_, exp(score(s;—1,h;))

a,; = align(yy, x;) = Softmax of some predefined alignment score..

How well two words y, and x; are aligned.

Name Definition Citation

Self- Relating different positions of the same input sequence. Theoreticallythe Cheng2016
Attention(&) self-attention can adopt any score functions above, but just replace the
target sequence with the same input sequence.

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Self-Attention: Input’s attention on itself

What do we do next?

The_
animal_
didn_

|9

Cross_
the_
street_
because_
it_

was_
too_

tire

d

14

What do we do next?

The_
animal_
didn_
Cross_
the_
street_
because_
it_
was_
too_
tire

d

Self-Attention: Input’s attention on itself

The_
animal_
didn_

|9

Cross_
the_
street_
because_
it_

was_
too_

tire

d

15

Self-Attention: Input’s attention on itself

The_ The_
animal_ animal_
didn_ didn_
=
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it_ — >z [T
was_ was_
too_ too_
tire tire

d d

16

Self-Attention: Overview

 The big idea:
Self-attention computes the output
vector z; fFor each word via a weighted
sum of vectors extracted from each word
in the input sentence

« Here, self-attention learns that “it”
should pay attention to “the animal” (i.e.
the entity that “it” refers to)

« Why the name self-attention?
This describes attention that the input
sentence pays to itself

The_
animal_
didn_

street_

because _

it_
was_
too_
tire

The_
animal_
didn_

t

Cross_
the_
street_

because _

it_
was_
too_
tire

———z [

Self-Attention: Sketch

The_
animal_
didn_

IS

Cross_
the_
street_
because_
it_

was_

too_
tire

The_
animal_
didn_

| &3

Cross_
the_
street_
because_
it_

was

too_

tire

18

Self-Attention: Overview

How it works:

1. To determine how much attention a
word should pay to each other other, we

compute
a
compare it

for the word and
to a
for every other word...

The_
animal_
didn_

street_
because_
it_
was_
too_
tire

HEHEHEEEEEE68EE

The_
animal_
didn_

|9

Cross_

the_

street_

because_

it_ |
was_

too_

tire

19

How it works:
1.

Self-Attention: Overview

To determine how much attention a
word should pay to each other other, we
compute
a for the word and
compare it to a

for every other word...

i

:

e

3

animal_
didn_

Cross_
the_
street_
because_
it_

was_
too_

tire

The_
animal_
didn_

|9

Cross_
the_
street_
because_
it_

was_
too_

tire

20

Self-Attention: Overview

How it works:

1. To determine how much attention a
word should pay to each other other, we

compute
a
compare it

to compute our alignment score

for the word and
to a
for every other word...

(]

d LB EE EEEEE

The_
animal_
didn_

street_
because_
it_

was_
too_

tire

The_
animal_
didn_

|9

Cross_
the_
street_
because_
it_

was_
too_

tire

21

Any questions?

Self-Attention: Overview

x The_| The_
How it works: x animal_| [[| animal_
1. To determine how much attention a % d'd'}— L f"dn-
word should pay to each other other, we X -0 =
compute a For the word X SEEN L
and compareitto a forevery [0 x cross [[[Cross_
other word... to compute our alignment x the_ (NN the_
score x Street_ D:D street_
[0 | Xbecause_[[|| because_
2. To produce the output vector,wesum [0] X it] @t —> LT[]
up the for each word, [0] x was_[[] was_
weighted by the score we computed in X too_ [T too_
step 1 [0] % tire (T tire
[0] X d_ I d_
x T

22

Self-Attention: Details

Input Thinking

Embedding f('\l I] | |

X2 [

I

|

23

Self-Attention: Details

Input Thinking
Embedding X1|] | | |
Queries mEED
Extract 3 /
vectors from [(TT1]
— > Keys
each word /

embedding

Values vil [T

Machines

x- [

a1

[T 1]

24

Self-Attention: Details

Input Machines
Embedding X,| | | | |
Wo Each vector is obtained
by multiplying the
Queries qz = x. [N % embedding with the
respective weight
matrix.
E
Vecto);tsr?:()tn?; How do we get these
I— _ S
each word > Keys HEN [= weight matrices”
embedding

These matrices are the
trainable parameters
of the network

Values DD = x. [*

25

Self-Attention: Details

Computing self-attention for “Thinking”

What do we
calculate next?

Input

Embedding

Queries

Keys

Values

q1

Thinking

X2

q2

Machines

26

Self-Attention: Details

Computing self-attention for “Thinking” Input
1. Score: Dot product query vector for

“Thinking” (q4) with the key vectors of Embedding

each word in the sentence ().
Queries
Keys
Values
Score

q1

Thinking

Machines

q2

27

Self-Attention: Details

Computing self-attention for “Thinking” Input
1. Score: Dot product query vector for
“Thinking” (g4) with the key vectors of Embedding
each word in the sentence ().
Queries
Keys
What this is essentially asking is:
How much should “Thinking” pay Values
attention to each other word in the
sequence? Score
Query vectors are asking the
question and key vectors respond.
What do we

calculate next?

q2

28

Computing self-attention for “Thinking”

1.

Self-Attention: Details

Score: Dot product query vector for
“Thinking” (q4) with the key vectors of
each word in the sentence ().
Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (/dx)

d1

q2

29

Self-Attention: Details

Computing self-attention for “Thinking”

1. Score: Dot product query vector for
“Thinking” (q4) with the key vectors of
each word in the sentence ().

2. Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

3. Softmax: Apply softmax layer.

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (dx)

Softmax

g1

q2

30

Self-Attention: Details

Computing self-attention for “Thinking” Input
1. Score: Dot product query vector for
“Thinking” (q4) with the key vectors of Embedding
each word in the sentence ().
2. Scale: Divide each score by square root Queries
of key vector dimensionality. Results in
more stable gradients. Keys
3. Softmax: Apply softmax layer.
Values
By applying softmax, we Score
transform the scores into
attention weights. Divide by 8 (vdx)
What do we
Softmax
calculate next?

31

Input

Self-Attention: Details embeading

. . et e e Queries
Computing self-attention for “Thinking
1. Score: Dot product query vector for Keys
“Thinking” (q4) with the key vectors of
. Values
each word in the sentence ()
2. Scale: Divide each score by square root c
of key vector dimensionality. Results in core
more stable gradients. N
3. Softmax: Apply softmax layer. Divide by 8 (v)
4. Weighting: Multiply value vector of
Softmax

each word in the sentence () with

the respective softmax values.
Softmax
X

q2

Input

Self-Attention: Details embeading

Queries
Computing self-attention for “Thinking”
1. Score: Dot product query vector for Keys
“Thinking” (q4) with the key vectors of W
each word in the sentence ()
2. Scale: Divide each score by square root
of key vector dimensionality. Results in SCare
more stable gradients.
Divide by 8 (d;.)

3. Softmax: Apply softmax layer.

4. Weighting: Multiply value vector of
each word in the sentence () with Softmax
the respective softmax values.

Softmax
\ :
The idea here is that the value
vectors store the contextual
infFormation that each word provides.

H E

Self-Attention: Details

Computing self-attention for “Thinking”

1.

W

Score: Dot product query vector for
“Thinking” (q4) with the key vectors of
each word in the sentence ().
Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

. Softmax: Apply softmax layer.
. Weighting: Multiply value vector of

each word in the sentence () with
the respective softmax values.

. Sum: Sum up weighted value vectors

() into one final self-attention
vector for “Thinking” (z,)

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (d;.)

Softmax

Softmax
>

q2

Self-Attention: Details

Computing self-attention for “Thinking”

1.

W

We are weighting the context provided by each
word by the amount of attention we should pay.

Score: Dot product query vector for
“Thinking” (g4) with the key vectors of
each word in the sentence ().
Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

. Softmax: Apply softmax layer.

Weighting: Multiply value vector of
each word in the sentence () with
the respective softmax values.

. Sum: Sum up weighted value vectors

() into one final self-attention
vector for “Thinking” (z,)

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (d;.)

Softmax

Softmax
>

g2

H E

{1 ® — q:

Any questions?

Self-Attention as a Matrix Computation

A

Each row of X is a word
embedding of aword in
our sentence.

Get your pens/papers or
tablets ready!

What would be the dimensions of the
weight matrices to calculate the query, key,
and value?

What would be the dimensions of the
qguery, key, and value matrices?

Apply the steps of calculating attention
weights on the query and key matrices.

What is the dimension of attention weight
matrix?

Multiply the attention weight matrix to
value matrix produce the output matrix.

What are the dimensions of output
matrix?

Self-Attention as a Matrix Computation

/: x -

Each row of X is a word
embedding of aword in
our sentence.

37

Self-Attention as a Matrix Computation

A

Each row of X is a word
embedding of aword in
our sentence.

“I;Uli V;Uf." Q

Matrix multiplication with
wWe, WK, and gives us
matrices Q, K, and V,
where the ith rows of each
matrix represent the
vectors q;, k;, and

38

Self-Attention as a Matrix Computation

Matrix multiplying Q and the
transpose of K calculates all the

“score” values.
X
softmax ()

Dividing by /d; correctly
scales values.

39

Self-Attention as a Matrix Computation

The result is a Z matrix where
the ith row represents the
self-attention vector

Matrix multiplying Q and the
transpose of K calculates all the
“score” values.

X
softmax () =
\/ (1;“.
Any questions? /

o Multiplying the resulting
Dividing by /d; correctly vector with V properly
scales values. weighs the v;vectors.

40

Encoder Block Map

Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Self-Attention layer is applied to
each word individually.

\C

r1 [r [
/ A A
Feed Forward Feed Forward
Neural Network Neural Network
2 [z, [
Self-Attention
\ A A
| |
x1 [x2 [T
Thinking Machines

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Self-Attention layer is applied to
each word individually.

Feed Forward layer is applied to
each word individually.

—

T
LT LT

1

(

Feed Forward
Neural Network

T
LT

1

(

Feed Forward
Neural Network

T

LTI
1 1
1 1

\lx’lﬂHlaﬂHg_j]

42

Encoder Block Map

Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Self-Attention layer is applied to
each word individually.

Feed Forward layer is applied to
each word individually.

The outputs of the feed forward
layer are then passed as the inputs
of the next encoder block.

—

T
EI:I:D

Feed Forward
Neural Networ

)

T
M

(s

Feed Forward
Neural Networ

)

LT
t t
Self-Attention
1 1
X

43

Encoder Block Map
N

Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Self-Attention layer is applied to
each word individually.

Feed Forward layer is applied to

T
LT LT

1

eural Networ

[Feed Forward
N

)

T
.

I

eural Networ

[Feed Forward
N

)

each word individually.

The outputs of the feed forward
layer are then passed as the inputs

of the next encoder block.

But we forgot about something...

1 1
LT T] LTI
1 1
1 1
[T TT] LT T]

44

What are we missing?

Hint: Remember — we are not using RNNs anymore.

Have we neglected/lost any information about the original input sequence?

45

Positional Encodings

Instead of passing Embedding vector to
encoder, we pass Embedding with
Time Signal vector.

Positional Encoding is embedding_size
vector that encodes information about
the position of a word in a sequence.

Positional Encodings can be learned or
defined by a Fixed function.

We add the Positional Encoding to the
Embedding to get our Embedding with
Time Signal vector.

C

ENCODER #1

T

ENCODER #0

¢

a

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

46

Positional Encodings

POSITIONAL 1 1 0.84 [eXelolokl 1 (VR 0.0002 | -0.42 1
ENCODING
- - -
EMBEDDINGS X1 X2 X3
INPUT Je Suis étudiant

a7
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Positional Encodings

POSITIONAL 1 1 0.84 [oXooloki 1 (VX 0.0002 | -0.42 1
ENCODING |
+ + +
EMBEDDINGS X1 X2 X3
INPUT Je Suis étudiant

Where do these numbers come from?
« Carefully-chosen sinusoidal patterns such that when we add them to the
embedding vectors, their dot products w/ each other reflect the distance

between them in the sentence.

48
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

More to come on Transformer!

Multi-headed attention
Modifications for efficiency

Decoder

OUTPUT | | am a student

s . \)
ENCODER DECODER
_ >
4 4
7~ N
ENCODER DECODER
2 A
ENCODER DECODER
\ J
4 4
g \
ENCODER DECODER
. 7
4 4
4)
ENCODER DECODER
_ 7
4 4
ENCODER DECODER
\ J
- ry g,
I
INPUT | Je suis étudiant

49

Recap

Seq-to-seq using
transformers

Encoder
module

RNNs cannot be
parallelized

Can forget information

Transformers — Encoder-Decoder

— with just attention
I Self-attention I
I Fully connected layers I
I Positional encodings I

Self-Attention

