
Deep Learning
CSCI 1470/2470

Spring 2024

Ritambhara Singh

March 11, 2024
Monday

Transformers

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Encoder LSTM

hansards révisé numéro 1 STOP

Decoder LSTM

STOP revised hansards number 1

Final LSTM state
as sentence
embedding

Dense layer

revised hansards number 1 STOP

Encoder LSTM

hansards révisé numéro 1 STOP

Decoder LSTM

STOP revised hansards number 1

Dense layer

revised hansards number 1 STOP

+

Sum of LSTM
states as
sentence
embedding

New:
𝐸! =	sum of LSTM
states

Decoder

STOP revised hansards number 1

Dense

revised hansards number 1 STOP

Encoder

hansards révisé numéro 1 STOP

×+×+ ×+ ×+×+×+

This idea of passing each cell of the
decoder a weighted sum of the
encoder states is called attention.

Different words in the output “pay
attention” to different words in the
input

Review: “Attention Is All You Need”

A 2017 paper that introduced the Transformer model for machine translation

• Has no recurrent networks!

• Only uses attention

Motivation:
• RNN training is hard to parallelize since the previous word must be processed before next word

• Transformers are trivially parallelizable

• Even with LSTMs / GRUs, preserving important linguistic context over very long sequences is
difficult

• Transformers don’t even try to remember things (every step looks at a weighted combination of all
words in the input sentence)

5

Review: Transformer Model Overview

6
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

• The Transformer model breaks
down into Encoder and Decoder
blocks.

• At a high level, similar to the
seq2seq architecture we’ve seen
already...

• ...but there are no recurrent nets
inside the Encoder and Decoder
blocks!

Review: Transformer Model Overview

7

• The Transformer model breaks
down into Encoder and Decoder
blocks.

• At a high level, similar to the
seq2seq architecture we’ve seen
already...

• ...but there are no recurrent nets
inside the Encoder and Decoder
blocks!

• For better performance, often
stack multiple Encoder and
Decoder blocks (deeper network)

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Transformer Model Overview

8

• Let’s look at what goes on inside
one of these Encoder blocks

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

9
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Words in input sentence

ENCODER

These per-word output
vectors are analogous to the
LSTM hidden states from the
seq2seq2 model

• They should capture “what
information about the input
sentence is relevant to
translating this word?”

Encoder Block Map

10

• Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

11

• Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

• Self-Attention layer is applied to
each word individually.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

12

• Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

• Self-Attention layer is applied to
each word individually.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Let’s revisit self-attention in detail!

Review: Attention types

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Self-Attention: Input’s attention on itself

14
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

What do we do next?

15
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-Attention: Input’s attention on itself

What do we do next?

16
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-Attention: Input’s attention on itself

Self-Attention: Overview

• The big idea:
Self-attention computes the output
vector 𝑧! for each word via a weighted
sum of vectors extracted from each word
in the input sentence

• Here, self-attention learns that “it”
should pay attention to “the animal” (i.e.
the entity that “it” refers to)

• Why the name self-attention?
This describes attention that the input
sentence pays to itself

17
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-Attention: Sketch

18
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-Attention: Overview

19
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Query vector

Key vectors

How it works:
1. To determine how much attention a

word should pay to each other other, we
compute
a query vector for the word and
compare it to a
key vector for every other word...

Self-Attention: Overview

20
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Key vectors

How it works:
1. To determine how much attention a

word should pay to each other other, we
compute
a query vector for the word and
compare it to a
key vector for every other word...

Self-Attention: Overview

21
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Scores
0.5

0.5

0.2

0.1

0.3

0

0.1

0.1

0

0

0

0.2

0

0

0.1

How it works:
1. To determine how much attention a

word should pay to each other other, we
compute
a query vector for the word and
compare it to a
key vector for every other word...
to compute our alignment score

Self-Attention: Overview

22
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

How it works:
1. To determine how much attention a

word should pay to each other other, we
compute a query vector for the word
and compare it to a key vector for every
other word... to compute our alignment
score

2. To produce the output vector, we sum
up the value vectors for each word,
weighted by the score we computed in
step 1

0.5

0.5

0.2

0.1

0.3

0

0.1

0.1

0

0

0

0.2

0

0

0.1

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

Value vectorsScores

+

Any questions?

Self-Attention: Details

23
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-Attention: Details

24

Extract 3
vectors from

each word
embedding

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-Attention: Details

25

Extract 3
vectors from

each word
embedding

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Each vector is obtained
by multiplying the
embedding with the
respective weight
matrix.

These matrices are the
trainable parameters
of the network

How do we get these
weight matrices?

Self-Attention: Details

26

Computing self-attention for “Thinking”

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

What do we
calculate next?

Self-Attention: Details

27

Computing self-attention for “Thinking”

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

1. Score: Dot product query vector for
“Thinking” (q1) with the key vectors of
each word in the sentence (k1,2,…,n).

Self-Attention: Details

28

Computing self-attention for “Thinking”

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

1. Score: Dot product query vector for
“Thinking” (q1) with the key vectors of
each word in the sentence (k1,2,…,n).

What this is essentially asking is:
How much should “Thinking” pay
attention to each other word in the
sequence?

Query vectors are asking the
question and key vectors respond.

What do we
calculate next?

Self-Attention: Details

29

Computing self-attention for “Thinking”

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

1. Score: Dot product query vector for
“Thinking” (q1) with the key vectors of
each word in the sentence (k1,2,…,n).

2. Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

Self-Attention: Details

30

Computing self-attention for “Thinking”

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

1. Score: Dot product query vector for
“Thinking” (q1) with the key vectors of
each word in the sentence (k1,2,…,n).

2. Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

3. Softmax: Apply softmax layer.

Self-Attention: Details

31

Computing self-attention for “Thinking”

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

1. Score: Dot product query vector for
“Thinking” (q1) with the key vectors of
each word in the sentence (k1,2,…,n).

2. Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

3. Softmax: Apply softmax layer.

By applying softmax, we
transform the scores into
attention weights.

What do we
calculate next?

Self-Attention: Details

32

Computing self-attention for “Thinking”

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

1. Score: Dot product query vector for
“Thinking” (q1) with the key vectors of
each word in the sentence (k1,2,…,n).

2. Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

3. Softmax: Apply softmax layer.
4. Weighting: Multiply value vector of

each word in the sentence (v1,2,…,n) with
the respective softmax values.

33

Computing self-attention for “Thinking”

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

1. Score: Dot product query vector for
“Thinking” (q1) with the key vectors of
each word in the sentence (k1,2,…,n).

2. Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

3. Softmax: Apply softmax layer.
4. Weighting: Multiply value vector of

each word in the sentence (v1,2,…,n) with
the respective softmax values.

The idea here is that the value
vectors store the contextual
information that each word provides.

Self-Attention: Details

34

Computing self-attention for “Thinking”

1. Score: Dot product query vector for
“Thinking” (q1) with the key vectors of
each word in the sentence (k1,2,…,n).

2. Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

3. Softmax: Apply softmax layer.
4. Weighting: Multiply value vector of

each word in the sentence (v1,2,…,n) with
the respective softmax values.

5. Sum: Sum up weighted value vectors
(v1,2,…,n) into one final self-attention
vector for “Thinking” (z1)

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-Attention: Details

35

Computing self-attention for “Thinking”

1. Score: Dot product query vector for
“Thinking” (q1) with the key vectors of
each word in the sentence (k1,2,…,n).

2. Scale: Divide each score by square root
of key vector dimensionality. Results in
more stable gradients.

3. Softmax: Apply softmax layer.
4. Weighting: Multiply value vector of

each word in the sentence (v1,2,…,n) with
the respective softmax values.

5. Sum: Sum up weighted value vectors
(v1,2,…,n) into one final self-attention
vector for “Thinking” (z1)

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

We are weighting the context provided by each
word by the amount of attention we should pay.

Self-Attention: Details

Any questions?

Self-Attention as a Matrix Computation

36

Each row of X is a word
embedding of a word in
our sentence.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

What would be the dimensions of the
weight matrices to calculate the query, key,
and value?

What would be the dimensions of the
query, key, and value matrices?

Apply the steps of calculating attention
weights on the query and key matrices.

What is the dimension of attention weight
matrix?

Multiply the attention weight matrix to
value matrix produce the output matrix.

What are the dimensions of output
matrix?

Get your pens/papers or
tablets ready!

Self-Attention as a Matrix Computation

37

Each row of X is a word
embedding of a word in
our sentence.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-Attention as a Matrix Computation

38

Each row of X is a word
embedding of a word in
our sentence.

Matrix multiplication with
WQ, WK, and WV gives us
matrices Q, K, and V,
where the ith rows of each
matrix represent the
vectors qi, ki, and vi.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-Attention as a Matrix Computation

39

Matrix multiplying Q and the
transpose of K calculates all the
“score” values.

Dividing by 𝑑" correctly
scales values.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-Attention as a Matrix Computation

40

Matrix multiplying Q and the
transpose of K calculates all the
“score” values.

Dividing by 𝑑" correctly
scales values.

Multiplying the resulting
vector with V properly
weighs the vi vectors.

The result is a Z matrix where
the ith row represents the
self-attention vector zi

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Any questions?

Encoder Block Map

41

• Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

• Self-Attention layer is applied to
each word individually.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

42

• Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

• Self-Attention layer is applied to
each word individually.

• Feed Forward layer is applied to
each word individually.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

43

• Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

• Self-Attention layer is applied to
each word individually.

• Feed Forward layer is applied to
each word individually.

• The outputs of the feed forward
layer are then passed as the inputs
of the next encoder block.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

44

• Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

• Self-Attention layer is applied to
each word individually.

• Feed Forward layer is applied to
each word individually.

• The outputs of the feed forward
layer are then passed as the inputs
of the next encoder block.

• But we forgot about something…

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

What are we missing?
Hint: Remember – we are not using RNNs anymore.

Have we neglected/lost any information about the original input sequence?

45

Positional Encodings

46

• Instead of passing Embedding vector to
encoder, we pass Embedding with
Time Signal vector.

• Positional Encoding is embedding_size
vector that encodes information about
the position of a word in a sequence.

• Positional Encodings can be learned or
defined by a fixed function.

• We add the Positional Encoding to the
Embedding to get our Embedding with
Time Signal vector.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Positional Encodings

47
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Positional Encodings

48
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Where do these numbers come from?
• Carefully-chosen sinusoidal patterns such that when we add them to the

embedding vectors, their dot products w/ each other reflect the distance
between them in the sentence.

More to come on Transformer!

49

• Multi-headed attention

• Modifications for efficiency

• Decoder

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Recap RNNs cannot be
parallelized

Can forget information

Transformers – Encoder-Decoder
with just attention

Seq-to-seq using
transformers

Self-attention

Positional encodings

Encoder
module

Fully connected layers

