
Deep Learning
CSCI 1470/2470

Spring 2024

Ritambhara Singh

March 13, 2024
Wednesday

Transformers contd.

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Review: Transformer Model Overview

2

• The Transformer model breaks
down into Encoder and Decoder
blocks.

• At a high level, similar to the
seq2seq architecture we’ve seen
already...

• ...but there are no recurrent nets
inside the Encoder and Decoder
blocks!

• For better performance, often
stack multiple Encoder and
Decoder blocks (deeper network)

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Review: Encoder Block Map

3

• Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Review: Encoder Self-Attention

4

Encoder self-attention
Words in input
sequence

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Words in input
sequence

Words in input
sequence

Today’s goal – learn about other components of
Transformers and scaling of deep learning models

(1) Multi-headed attention and other improvements

(2) Decoder details

(3) Scaling deep learning models

Multi-head Attention

6

• Multi-head Attention is used to
improve the performance of
regular self-attention.

• We compute self-attention as
before some number of times.
Call these “attention heads”.

• The size of the attention heads
are smaller than when just
using regular self-attention.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Multi-head Attention

Multi-head Attention

8

To get one set of
attention vectors, we
concatenate all the
heads and apply a
linear layer in order
to get Z.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Multi-head Attention

9

To get one set of
attention vectors, we
concatenate all the
heads and apply a
linear layer in order
to get Z.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Multi-head Attention

10

To get one set of
attention vectors, we
concatenate all the
heads and apply a
linear layer in order
to get Z.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Multi-head Attention Visualized

11

Multiple heads allow for each head to
learn different relationships between
words in the sentence.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Multi-head Attention Visualized

12

Multiple heads allow for each head to
learn different relationships between
words in the sentence.

These relationships become more difficult
to interpret with many heads.

Visualizer tool:
https://colab.research.google.com/github/tens
orflow/tensor2tensor/blob/master/tensor2ten
sor/notebooks/hello_t2t.ipynb

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

Extra Performance Improvements

13

• Recap: This is the current state of
our encoder block

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Extra Performance Improvements

14

• Residual Connections

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Do you remember when we
talked about these?

Extra Performance Improvements

15

• Residual Connections: Just like in
CNN architectures, transformer
models make use of skip connections
to negate vanishing gradients.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Extra Performance Improvements

16

• Residual Connections: Just like in
CNN architectures, transformer
models make use of skip connections
to negate vanishing gradients.

• LayerNorm: Similar to Batch
Normalization, improves
convergence time.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Extra Performance Improvements

17

• Residual Connections: Just like in
CNN architectures, transformer
models make use of skip connections
to negate vanishing gradients.

• LayerNorm: Similar to Batch
Normalization, improves
convergence time.

We combine the residual connection
and self-attention layer by adding
them together.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Any questions?

Transformer Model Overview

18
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Transformer Model Overview

19
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Transformer Model Overview

20

• Now let’s look under the hood of
a Decoder block

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Decoder Block

21

Like in other seq2seq models, the decoder
receive the target sequence shifted back by one
step as input.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Ultimately, decoder terminates in a linear +
softmax to predict a probability distribution over
the next word in the target language (same as
with seq2seq model)

Decoder Block

22
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Self-attention, LayerNorm, and Feed Forward layers
are identical to the Encoder block versions.

What else do we need here?

Decoder Block

23
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

What’s Encoder-Decoder Attention?
• The part that says “how much should each

output word pay attention to each input word”
• Analogous to the ‘weighted average of LSTM

states’ that we pass to each decoder step in the
seq2seq model

Decoder Block

24
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

How to implement Encoder-Decoder attention?
• It’s exactly the same algorithm as self-attention...
• ...except that it queries the source sentence,

instead of the target sentence
• Specifically, it extracts the K and V vectors from

the output of the encoder

Encoder Self-Attention

25

Encoder self-attention
Words in input
sequence

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Words in input
sequence

Words in input
sequence

What do we change for Encoder-
Decoder attention?

What will be our query?
What will be our keys and values?

Encoder-Decoder Attention

26

Encoder-decoder attention

Output of encoder

Output of encoder

Previous words in
target sentence

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoders and Decoders Together

27
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoders and Decoders Together

28
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Any questions?

Side-note: Masking
Implementing the decoder side of self-attention uses masking.

Masking is a technique used to nullify certain words before they are
passed to the model to prevent the model from seeing them.

The reason for this stems from the fact that for the decoder, we would
like to pass the entire sequence of previous words.

In practice, it is a lot easier to instead pass it the entire sequence, and
mask out all of the words that the model isn’t allowed to see.

29

Your next assignment
(transformer part)
i.e. why you shouldn’t be scared, even though the architecture we just described is
pretty complicated...

30

Transformers part in Assignment 5

You will be implementing part of the transformer network (decoder)
yourselves as part of the next assignment!

Specifically, you will be asked to implement the Self-Attention portion of
the pipeline.

For 2470 students, you will also be required to implement Multi-headed
attention that uses your implementation of Self-Attention

31

Can we use Transformers for Image
classification?

32

How?

33

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
ICLR 2021

Transformers for Image classification

https://openreview.net/forum?id=YicbFdNTTy

Today’s goal – learn about other components of
Transformers and scaling of deep learning models

(1) Multi-headed attention and other improvements

(2) Decoder details

(3) Scaling deep learning models

Your first assignments == small DL systems

MNIST digit classification
• Model size: 7850 parameters

• 28*28*10 = 7840 weights
• 10 biases

• Data size: 188.16 MB
• 60,000 images * 28x28 pixels * 4bytes/pixel = 188,160,000 bytes

35

* + =

1

𝐱

784

𝐖

10

784

𝐛

1

10

𝐖𝐱 + 	𝐛

10

1

Your first assignments == small DL systems

CIFAR image classification
• Model size: 40,198 parameters

• C1: 5*5*3*16 = 1200 weights, 16 biases
• C2: 5*5*16*20 = 8000 weights, 20 biases
• C3: 3*3*20*20 = 3600 weights, 20 biases
• FC1: 320*80 = 25,600 weights, 80 biases
• FC2: 80*20 = 1600 weights, 20 biases
• FC3: 20*2 = 40 weights, 2 biases

• Data size: 737.28 MB
• 60,000 images * 32x32 pixels * 12bytes/pixel (4R,4G,4B) = 737,280,000 bytes

36

16

32

32

5

5
16

16

16

ReLU
+

Pool

5

5
20

ReLU
+

Pool

20

8

8

3

3
20

ReLU
+

Pool

20

4

4

320x
80

80x
20

20x
2

Now, things are starting to get bigger...

37

What happened, here?

Running the model on the entire dataset
at once exhausts the autograder VM’s
system memory, causing it to crash

What solved this bug?

What to do when DL systems get big

38

• Big = big data
• Big = big model

Scaling: Some Key Questions

• What do I do when my dataset won’t fit in memory?

• Can I use multiple processors to train faster?

• Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

39

Scaling: Some Key Questions

• What do I do when my dataset won’t fit in memory?

• Can I use multiple processors to train faster?

• Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

40

Data won’t fit in memory?

• What if our dataset gets so big we can’t even load it all into memory?
• Answer: Load, process, and discard smaller chunks of it.
• In Python, we don’t explicitly discard or “free” memory; the built-in garbage

collector takes care of that for us.

• Typically, load the data one batch at a time.

41

In Tensorflow: tf.data.Dataset

42https://www.tensorflow.org/api_docs/python/tf/data/Dataset

https://www.tensorflow.org/api_docs/python/tf/data/Dataset

Example: Reading in batches of images
Create a Dataset that contains all .jpg files
in a directory
dir_path = dir_name + '/*.jpg’
dataset = tf.data.Dataset.list_files(dir_path)

Apply a function that will read the contents of
each file into a tensor
dataset =
dataset.map(map_func=load_and_process_image)

Load up data in batches
dataset = dataset.batch(batch_size)

Iterate over dataset
for i, batch in enumerate(dataset):
 # processing code goes here

def load_and_process_image(file_path):
 # Load image
 image = tf.io.decode_jpeg(
 tf.io.read_file(file_path),
 channels=3)

 # Convert image to normalized float [0, 1]
 image = tf.image.convert_image_dtype(
 image,
 tf.float32)

 # Rescale data to range (-1, 1)
 image = (image - 0.5) * 2
 return image

43

Consequences of batched data loading

• Great! We can train/test on all
our data without blowing out
memory

• But, there’s a price to pay:
• More time loading data, in general
• Disk is idle while model is running

Loading data all at once:

Batched data loading:

44

Data load time

Model run time

Training iterations

Data load time

Model run time

Training iterations
What is the price?

Consequences of batched data loading

• Great! We can train/test on all
our data without blowing out
memory

• But, there’s a price to pay:
• More time loading data, in general
• Disk is idle while model is running

• What can we do about this?

Loading data all at once:

Batched data loading:

45

Data load time

Model run time

Training iterations

Data load time

Model run time

Training iterations
Next class!

Recap Multi-headed attention

Residual connections +
normalization

Decoder

Seq-to-seq using
transformers

Data and models getting big!

Batching can help! (with a price)

Scaling deep
learning
models

Memory and speed constraints

Helpful Resources

47

Visuals for this section were taken from:
http://jalammar.github.io/illustrated-transformer/

The “Attention is All You Need” paper:
https://arxiv.org/abs/1706.03762

http://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

