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ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”



Review: Transformer Model Overview
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• The Transformer model breaks 
down into Encoder and Decoder 
blocks.

• At a high level, similar to the 
seq2seq architecture we’ve seen 
already...

• ...but there are no recurrent nets 
inside the Encoder and Decoder 
blocks!

• For better performance, often 
stack multiple Encoder and 
Decoder blocks (deeper network)

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Review: Encoder Block Map
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• Encoder block breaks down into 
two main parts: Self-Attention, and 
Feed Forward layers.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Review: Encoder Self-Attention
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Encoder self-attention
Words in input
sequence

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

Words in input
sequence

Words in input
sequence



Today’s goal – learn about other components of 
Transformers and scaling of deep learning models

(1) Multi-headed attention and other improvements 

(2) Decoder details

(3) Scaling deep learning models



Multi-head Attention
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• Multi-head Attention is used to 
improve the performance of 
regular self-attention. 

• We compute self-attention as 
before some number of times. 
Call these “attention heads”.

• The size of the attention heads 
are smaller than when just 
using regular self-attention.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Multi-head Attention



Multi-head Attention
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To get one set of 
attention vectors, we 
concatenate all the 
heads and apply a 
linear layer in order 
to get Z.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 
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Multi-head Attention
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To get one set of 
attention vectors, we 
concatenate all the 
heads and apply a 
linear layer in order 
to get Z.
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Multi-head Attention Visualized
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Multiple heads allow for each head to 
learn different relationships between 
words in the sentence.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Multi-head Attention Visualized
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Multiple heads allow for each head to 
learn different relationships between 
words in the sentence.

These relationships become more difficult 
to interpret with many heads.

Visualizer tool:
https://colab.research.google.com/github/tens
orflow/tensor2tensor/blob/master/tensor2ten
sor/notebooks/hello_t2t.ipynb

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb


Extra Performance Improvements
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• Recap: This is the current state of 
our encoder block

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Extra Performance Improvements
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• Residual Connections

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

Do you remember when we 
talked about these?



Extra Performance Improvements
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• Residual Connections: Just like in 
CNN architectures, transformer 
models make use of skip connections 
to negate vanishing gradients.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Extra Performance Improvements
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• Residual Connections: Just like in 
CNN architectures, transformer 
models make use of skip connections 
to negate vanishing gradients.

• LayerNorm: Similar to Batch 
Normalization, improves 
convergence time.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Extra Performance Improvements
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• Residual Connections: Just like in 
CNN architectures, transformer 
models make use of skip connections 
to negate vanishing gradients.

• LayerNorm: Similar to Batch 
Normalization, improves 
convergence time.

We combine the residual connection 
and self-attention layer by adding 
them together.

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

Any questions?



Transformer Model Overview
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Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Transformer Model Overview
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Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Transformer Model Overview
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• Now let’s look under the hood of 
a Decoder block

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Decoder Block
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Like in other seq2seq models, the decoder 
receive the target sequence shifted back by one 
step as input. 

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

Ultimately, decoder terminates in a linear + 
softmax to predict a probability distribution over 
the next word in the target language (same as 
with seq2seq model)



Decoder Block
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Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

Self-attention, LayerNorm, and Feed Forward layers 
are identical to the Encoder block versions.

What else do we need here?



Decoder Block
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Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

What’s Encoder-Decoder Attention?
• The part that says “how much should each 

output word pay attention to each input word”
• Analogous to the ‘weighted average of LSTM 

states’ that we pass to each decoder step in the 
seq2seq model



Decoder Block
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Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

How to implement Encoder-Decoder attention?
• It’s exactly the same algorithm as self-attention...
• ...except that it queries the source sentence, 

instead of the target sentence
• Specifically, it extracts the K and V vectors from 

the output of the encoder



Encoder Self-Attention
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Encoder self-attention
Words in input
sequence

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

Words in input
sequence

Words in input
sequence

What do we change for Encoder-
Decoder attention?

What will be our query?
What will be our keys and values?



Encoder-Decoder Attention
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Encoder-decoder attention

Output of encoder

Output of encoder

Previous words in 
target sentence

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Encoders and Decoders Together 
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Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 



Encoders and Decoders Together 
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Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/ 

Any questions?



Side-note: Masking
Implementing the decoder side of self-attention uses masking.

Masking is a technique used to nullify certain words before they are 
passed to the model to prevent the model from seeing them.

The reason for this stems from the fact that for the decoder, we would 
like to pass the entire sequence of previous words. 

In practice, it is a lot easier to instead pass it the entire sequence, and 
mask out all of the words that the model isn’t allowed to see.
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Your next assignment 
(transformer part)
i.e. why you shouldn’t be scared, even though the architecture we just described is 
pretty complicated...
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Transformers part in Assignment 5

You will be implementing part of the transformer network (decoder) 
yourselves as part of the next assignment!

Specifically, you will be asked to implement the Self-Attention portion of 
the pipeline.

For 2470 students, you will also be required to implement Multi-headed 
attention that uses your implementation of Self-Attention

31



Can we use Transformers for Image 
classification?

32

How?
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An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
ICLR 2021

Transformers for Image classification

https://openreview.net/forum?id=YicbFdNTTy


Today’s goal – learn about other components of 
Transformers and scaling of deep learning models

(1) Multi-headed attention and other improvements 

(2) Decoder details

(3) Scaling deep learning models



Your first assignments == small DL systems

MNIST digit classification
• Model size: 7850 parameters

• 28*28*10 = 7840 weights
• 10 biases

• Data size: 188.16 MB
• 60,000 images * 28x28 pixels * 4bytes/pixel = 188,160,000 bytes
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Your first assignments == small DL systems

CIFAR image classification
• Model size: 40,198 parameters

• C1: 5*5*3*16 = 1200 weights, 16 biases
• C2: 5*5*16*20 = 8000 weights, 20 biases
• C3: 3*3*20*20 = 3600 weights, 20 biases
• FC1: 320*80 = 25,600 weights, 80 biases
• FC2: 80*20 = 1600 weights, 20 biases
• FC3: 20*2 = 40 weights, 2 biases

• Data size: 737.28 MB
• 60,000 images * 32x32 pixels * 12bytes/pixel (4R,4G,4B) = 737,280,000 bytes
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Now, things are starting to get bigger...

37

What happened, here?

Running the model on the entire dataset 
at once exhausts the autograder VM’s 
system memory, causing it to crash

What solved this bug?



What to do when DL systems get big

38

• Big = big data
• Big = big model



Scaling: Some Key Questions

• What do I do when my dataset won’t fit in memory?

• Can I use multiple processors to train faster?

• Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

39



Scaling: Some Key Questions

• What do I do when my dataset won’t fit in memory?

• Can I use multiple processors to train faster?

• Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

40



Data won’t fit in memory?

• What if our dataset gets so big we can’t even load it all into memory?
• Answer: Load, process, and discard smaller chunks of it.
• In Python, we don’t explicitly discard or “free” memory; the built-in garbage 

collector takes care of that for us.

• Typically, load the data one batch at a time.

41



In Tensorflow: tf.data.Dataset

42https://www.tensorflow.org/api_docs/python/tf/data/Dataset 

https://www.tensorflow.org/api_docs/python/tf/data/Dataset


Example: Reading in batches of images
# Create a Dataset that contains all .jpg files
# in a directory
dir_path = dir_name + '/*.jpg’
dataset = tf.data.Dataset.list_files(dir_path)

# Apply a function that will read the contents of 
# each file into a tensor
dataset =
dataset.map(map_func=load_and_process_image)

# Load up data in batches
dataset = dataset.batch(batch_size)

# Iterate over dataset
for i, batch in enumerate(dataset):
   # processing code goes here

def load_and_process_image(file_path):
   # Load image
   image = tf.io.decode_jpeg(
      tf.io.read_file(file_path),
      channels=3)
   
   # Convert image to normalized float [0, 1]
   image = tf.image.convert_image_dtype(
      image,
      tf.float32)
   
   # Rescale data to range (-1, 1)
   image = (image - 0.5) * 2
   return image

43



Consequences of batched data loading

• Great! We can train/test on all 
our data without blowing out 
memory

• But, there’s a price to pay:
• More time loading data, in general
• Disk is idle while model is running

Loading data all at once:

Batched data loading:

44

Data load time

Model run time

Training iterations

Data load time

Model run time

Training iterations
What is the price?



Consequences of batched data loading

• Great! We can train/test on all 
our data without blowing out 
memory

• But, there’s a price to pay:
• More time loading data, in general
• Disk is idle while model is running

• What can we do about this?

Loading data all at once:

Batched data loading:

45

Data load time

Model run time

Training iterations

Data load time

Model run time

Training iterations
Next class!



Recap Multi-headed attention

Residual connections + 
normalization

Decoder

Seq-to-seq using 
transformers

Data and models getting big!

Batching can help! (with a price)

Scaling deep 
learning 
models

Memory and speed constraints



Helpful Resources

47

Visuals for this section were taken from:
http://jalammar.github.io/illustrated-transformer/

The “Attention is All You Need” paper:
https://arxiv.org/abs/1706.03762

http://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

