

Course announcements

Project proposals due today at 6pm EST!

• No labs this week! ©

• No class on March 22 (Friday)! ©

• Finish mid-semester feedback and get 2 extra late days! ©

What to do when DL systems get big

- Big = big data
- Big = big model

Today's goal – learn about scaling deep learning models and sustainable deep learning

- (1) Managing memory constraints
- (2) Distributing work across processors, GPUs, machines
- (3) Development of sustainable DL systems
 - Near-term solutions
 - Mid-term solutions
 - Long-term solutions

Scaling: Some Key Questions

What do I do when my dataset won't fit in memory?

Can I use multiple processors to train faster?

Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

Review: Consequences of batched data loading

- Great! We can train/test on all our data without blowing out memory
- But, there's a price to pay:
 - More time loading data, in general
 - Disk is idle while model is running
- What can we do about this?

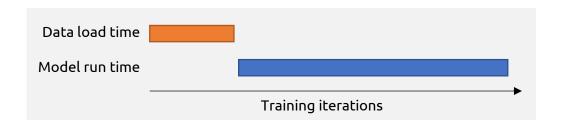
Loading data all at once:

Batched data loading:

Consequences of batched data loading

- Great! We can train/test on all our data without blowing out memory
- But, there's a price to pay:
 - More time loading data, in general
 - Disk is idle while model is running
- What can we do about this?

Loading data all at once:



Batched data loading:

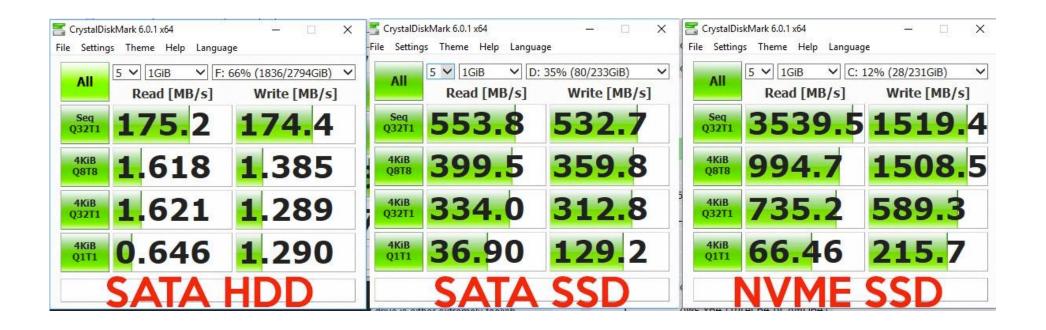
Use the fastest disk you can get your hands on

Magnetic Disk Drive (HDD)

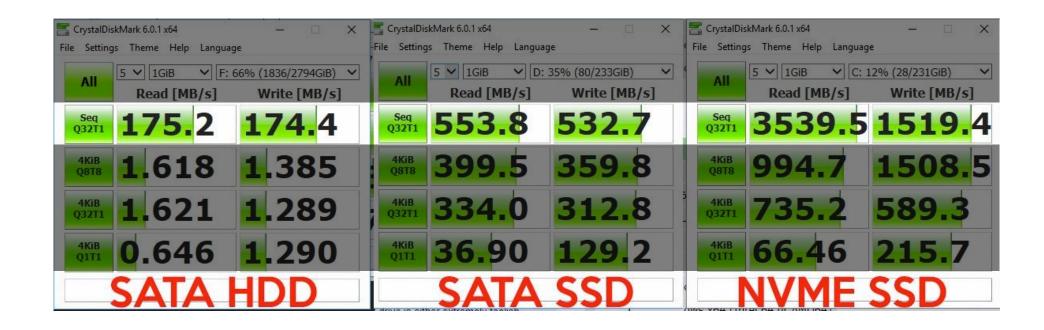
SATA Solid State Disk (SDD)

NVMe Solid State Disk (NVMe)

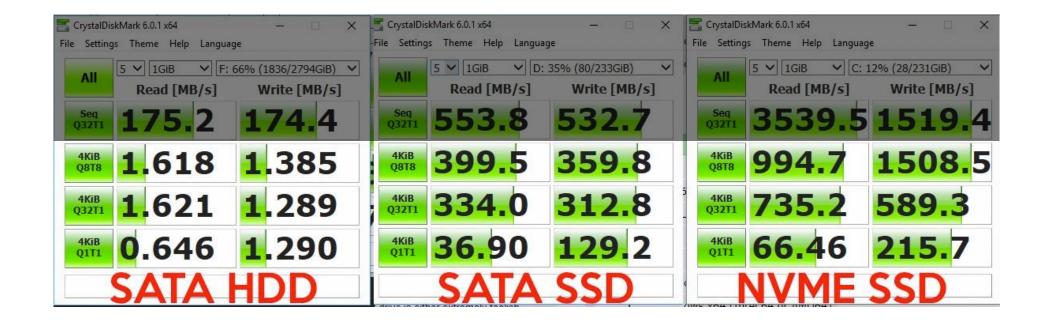
Use the fastest disk you can get your hands on



Sequential accesses (memory addresses are contiguous)



Random accesses

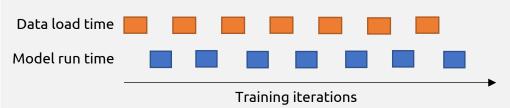


Consequences of batched data loading

- Great! We can train/test on all our data without blowing out memory
- But, there's a price to pay:
 - More time loading data, in general
 - Disk is idle while model is running
- What can we do about this?

Loading data all at once:

Batched data loading:



Consequences of batched data loading

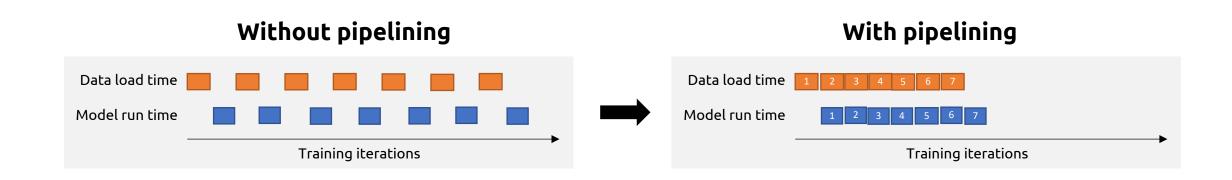
- Great! We can train/test on all our data without blowing out memory
- But, there's a price to pay:
 - More time loading data, in general
 - Disk is idle while model is running
- What can we do about this?

Loading data all at once:

Batched data loading:

CPU/GPU Pipelining

- If we train our model on the GPU...
- ...then the CPU is free to handle data loading while the model is running
- GPU doesn't have to "wait" on the CPU to load data



In Tensorflow: tf.data.Dataset does this

```
# Create a Dataset that contains all .jpg files
# in a directory
dir path = dir name + '/*.jpg'
dataset = tf.data.Dataset.list files(dir path)
# Apply a function that will read the contents of
# each file into a tensor
dataset =
dataset.map(map func=load and process image)
# Load up data in batches
dataset = dataset.batch(batch size)
# Iterate over dataset
for i, batch in enumerate(dataset):
   # processing code goes here
```

```
def load and process image(file path):
   # Load image
   image = tf.io.decode jpeg(
      tf.io.read_file(file_path),
      channels=3)
   # Convert image to normalized float [0, 1]
   image = tf.image.convert image dtype(
      image,
      tf.float32)
   # Rescale data to range (-1, 1)
   image = (image - 0.5) * 2
   return image
```

In Tensorflow: tf.data.Dataset does this

```
# Create a Dataset that contains all .jpg files
# in a directory
dir path = dir name + '/*.jpg'
dataset = tf.data.Dataset.list files(dir path)
# Apply a function that will read the contents of
# each file into a tensor
dataset =
dataset.map(map func=load and process image)
# Load up data in batches
dataset = dataset.batch(batch size)
# Prefetch the next batch while GPU is training
dataset = dataset.prefetch(1)
# Iterate over dataset
for i, batch in enumerate(dataset):
   # processing code goes here
```

```
def load and process image(file path):
  # Load image
   image = tf.io.decode jpeg(
     tf.io.read_file(file_path),
      channels=3)
  # Convert image to normalized float [0, 1]
   image = tf.image.convert image dtype(
      image,
     tf.float32)
  # Rescale data to range (-1, 1)
   image = (image - 0.5) * 2
   return image
```

The pipeline isn't always so perfect

 If you have large batch sizes, high-resolution images, etc., it can take longer to load the batch from disk than it takes the model to run

Ideal pipeline

Data load time 1 2 3 4 5 6 7 Model run time 1 2 3 4 5 6 7 Training iterations

Actual pipeline

- GPU sits idle, wasting compute potential
 - This is an example of an I/O bound program (i.e. the bottleneck is disk I/O)
 - A compute-bound program = bottleneck is processor speed
 - A *memory-bound* program = bottleneck is memory read/write throughput
- What can we do?

Parallel Data Loading

- If you're doing preprocessing on each loaded datum to prepare it for training, then the program may actually be compute-bound.
 - Disk is capable of higher read throughput, but the CPU is has to spend time doing stuff to one datum before it can request the next one.

Any ideas?

Solution: use multiple CPUs!

Scaling: Some Key Questions

What do I do when my dataset won't fit in memory?

Can I use multiple processors to train faster?

Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

In Tensorflow: tf.data.Dataset does this

```
# Create a Dataset that contains all .jpg files
# in a directory
dir path = dir name + '/*.jpg'
dataset = tf.data.Dataset.list files(dir path)
# Apply a function that will read the contents of #
each file into a tensor
dataset =
dataset.map(map func=load and process image)
# Load up data in batches
dataset = dataset.batch(batch size)
# Prefetch the next batch while GPU is training
dataset = dataset.prefetch(1)
# Iterate over dataset
for i, batch in enumerate(dataset):
   # processing code goes here
```

```
def load_and_process_image(file_path):
    # Load image
    image = tf.io.decode_jpeg(
        tf.io.read_file(file_path),
        channels=3)

# Convert image to normalized float [0, 1]
image = tf.image.convert_image_dtype(
        image,
        tf.float32)

# Rescale data to range (-1, 1)
image = (image - 0.5) * 2
return image
```

In Tensorflow: tf.data.Dataset does this

```
# Create a Dataset that contains all .jpg files
# in a directory
dir path = dir name + '/*.jpg'
dataset = tf.data.Dataset.list files(dir path)
# Apply a function that will read the contents of #
each file into a tensor
dataset =
dataset.map(map func=load and process image,
   num parallel calls=8)
# Load up data in batches
dataset = dataset.batch(batch size)
# Prefetch the next batch while GPU is training
dataset = dataset.prefetch(1)
# Iterate over dataset
for i, batch in enumerate(dataset):
   # processing code goes here
```

```
def load_and_process_image(file_path):
    # Load image
    image = tf.io.decode_jpeg(
        tf.io.read_file(file_path),
        channels=3)

# Convert image to normalized float [0, 1]
image = tf.image.convert_image_dtype(
        image,
        tf.float32)

# Rescale data to range (-1, 1)
image = (image - 0.5) * 2
return image
```

A note about Python parallelism

- Python does not support multithreading
 - One Python process = one thread
- tf.data.Dataset gets around this using <u>multiprocessing</u>
 - Each 'thread' is actually a separate Python process (with its own interpreter)
- This means there are limits to what your per-datum preprocessing functions can do.
 - In particular, no shared access to the state of Python objects.

Example: keeping track of images loaded

```
def load_and_process_image(file_path):
    # Load image
    image = tf.io.decode_jpeg(
        tf.io.read_file(file_path),
        channels=3)

# Convert image to normalized float [0, 1]
image = tf.image.convert_image_dtype(
        image,
        tf.float32)

# Rescale data to range (-1, 1)
image = (image - 0.5) * 2
return image
```

Example: keeping track of images loaded

Will this work?

This will not work!

```
images_loaded = []
def load and process image(file path):
   images_loaded.append(file path)
  # Load image
   image = tf.io.decode jpeg(
      tf.io.read file(file path),
      channels=3)
  # Convert image to normalized float [0, 1]
   image = tf.image.convert image dtype(
      image,
      tf.float32)
  # Rescale data to range (-1, 1)
   image = (image - 0.5) * 2
   return image
```

Scaling: Some Key Questions

What do I do when my dataset won't fit in memory?

Can I use multiple processors to train faster?

• Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

Scaling: Some Key Questions

What do I do when my dataset won't fit in memory?

Can I use multiple processors to train faster?

Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

- Thus far, we've just talked about using multiple CPUs for data loading
- But we can also talk about how to split up the model's computation onto multiple *GPUs*, if we have more than one available.

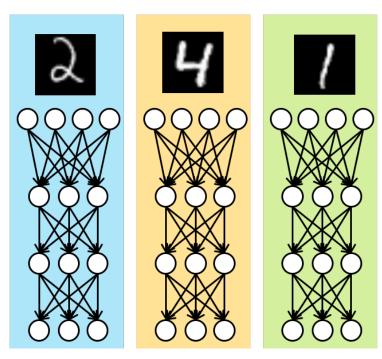
Two major ways to split up the model computation

Two major ways to split up the model computation

Data Parallel

Data parallelism:

compute gradients on larger batches by splitting the batches into smaller sub-batches, one per GPU.

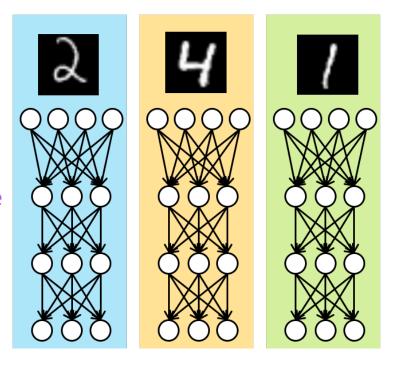


Two major ways to split up the model computation

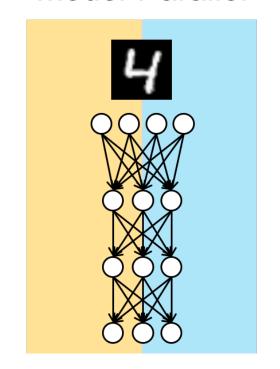
Data Parallel

Data parallelism:

compute gradients on larger batches by splitting the batches into smaller sub-batches, one per GPU.



Model Parallel

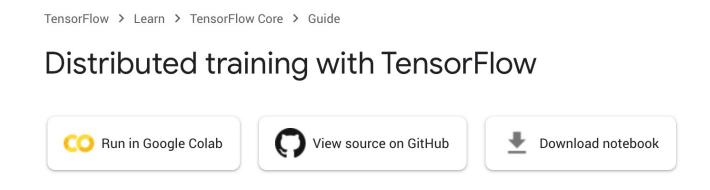


Model parallelism:

compute different parts of the model on different GPUs (Weights of FC layer)

Multi-GPU training in Tensorflow

• Tensorflow provides an API for data parallelism across multiple GPUs



 Workload partitioning: TF has no utilities for automatically splitting up your model across multiple GPUs. You'd have to engineer that yourself.

Hardware support for multi-GPU training

- NVIDIA cards support NVLink, which allows for fast direct memory transfer between GPUs
- Their line of DGX workstations/supercomputers takes advantage of this feature
 - But they cost upwards of \$40k...

Scaling: Some Key Questions

What do I do when my dataset won't fit in memory?

Can I use multiple processors to train faster?

Can I use multiple GPUs to train faster (or train bigger models?)

• Can I use multiple machines to train faster (or train bigger models?)

Scaling: Some Key Questions

What do I do when my dataset won't fit in memory?

Can I use multiple processors to train faster?

Can I use multiple GPUs to train faster (or train bigger models?)

Can I use multiple machines to train faster (or train bigger models?)

Distributed Training

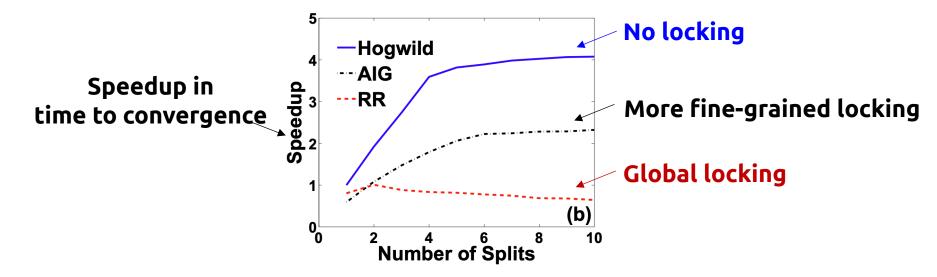
- What if multiple GPUs isn't enough? Suppose your model (or your data) is so big, the only way you can train it in a reasonable amount of time is to use GPUs on a whole cluster of machines?
 - Side note: unlikely to be a problem for you unless you're in a big company with tons of data and compute resource (e.g. Google/Facebook)

Distributed Training

- Recall our definition of data parallelism:
 - Data parallelism: compute gradients on larger batches by splitting the batches into smaller sub-batches, one per GPU.
- If we're splitting up the batch across a cluster of, say, 100 machines, then we need to wait for all 100 machines to compute their gradients before we can update the model's parameters.
- This *synchronization bottleneck* slows things down, preventing us from getting the 100x speedup we might expect.
- What if we just didn't synchronize, and let each machine use its gradient to update the model parameters whenever it's ready?
- Do you think this will work?

Lock-free parallel gradient updates?

- Surprisingly, lock-free gradient updating actually does work.
- Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient
 Descent was the first paper to show this.
- Achieves optimal convergence rates in theory if the gradient updates are sparse. Even if they're not, it often performs well in practice.

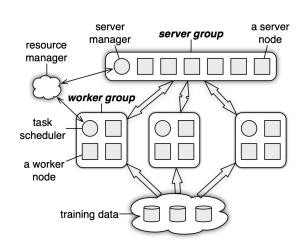


Architectures for distributed training

- Lots of decisions to make:
 - How many nodes should be workers?
 - How many nodes should store/update model parameters?
- <u>ParameterServer</u> is one prominent architecture for managing this design space

TensorFlow > Learn > TensorFlow Core

Parameter server training with ParameterServerStrategy



Today's goal – learn about scaling deep learning models and sustainable deep learning

- (1) Managing memory constraints
- (2) Distributing work across processors, GPUs, machines
- (3) Development of sustainable DL systems
 - Near-term solutions
 - Mid-term solutions
 - Long-term solutions

How do we train and run our neural nets?

\$ python3 <whatever_script>.py

What's *actually* happening when we run the script?

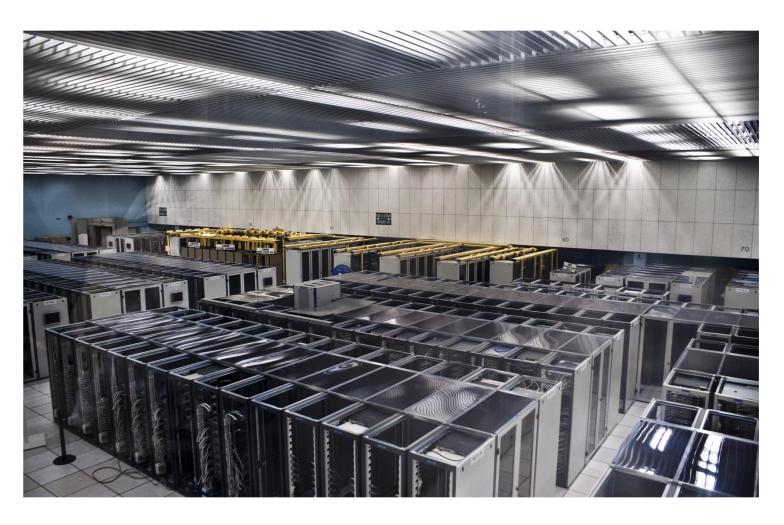
Three options (in this class):

- 1. The network trains locally on your CPU
- 2. The network trains on Brown CS department GPUs or OSCAR GPUs
- 3. The network trains remotely on GPUs owned by Google (GCP)

(in the world, could also likely be)

- 4. The network trains remotely on GPUs owned by Amazon (AWS)
- 5. The network trains remotely on GPUs owned by Microsoft

For example:



A closer look at power consumption <—> GPUs

- How much power does a GPU use while training a network?
 - Depends on the GPU, but it is a lot
- <u>Strubell et al. (2019)</u> estimated the power consumption involved in training state of the art neural networks (GPT2, Transformer, ELMo, BERT)

Carbon emissions the average American produces in a year: 36,156 lbs

Train an NLP pipeline: how many times of the average US yearly emissions?

What about a Transformer?

Join at menti.com | use code 7747 8504

Train an NLP pipeline (incl. tuning/experimentation):

~78,500 lbs (2.17x US yearly)

Train a transformer pipeline (like GPT-2):

3x greater than average US yearly emissions?
5x? 10x? More??

Train a transformer pipeline (incl. tuning/experimentation):

~626,000 lbs (17.32x US yearly)

That's a lot of power!

...where is it coming from?

How is "the cloud" powered?

Consumer	Renew.	Gas	Coal	Nuc.
China	22%	3%	65%	4%
Germany	40%	7%	38%	13%
United States	17%	35%	27%	19%
Amazon-AWS	17%	24%	30%	26%
Google	56%	14%	15%	10%
Microsoft	32%	23%	31%	10%

Table 2: Percent energy sourced from: Renewable (e.g. hydro, solar, wind), natural gas, coal and nuclear for the top 3 cloud compute providers (Cook et al., 2017), compared to the United States,⁴ China⁵ and Germany (Burger, 2019).

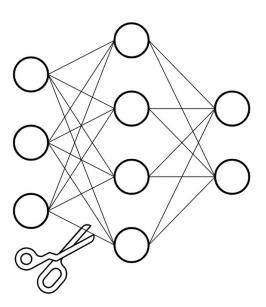
How can DL be more efficient & sustainable?

Future Directions (near-term)

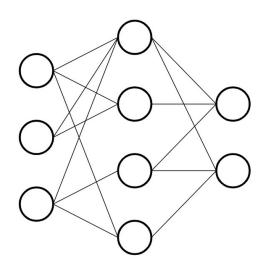
- Research/production should prioritize computationally efficient networks
 - There's already movement in this direction, e.g. <u>MobileNet</u> for deploying CNNs on low-power mobile devices
- Researchers should report training time, training hardware used, and hyperparameter sensitivity
 - Gives others a sense of costs and benefits of training a network
 - Reporting time & hardware are already standard practice; hyperparameter sensitivity less so...

Network pruning

- Random weight initialization on large number of connections — only some weights are going to be meaningful
- After training a network, most connections have weightings of approx 0 and only ~10-20% of connections have a meaningful weighting
- Thus, we can drop (or *prune*) 80-90% of network connections and maintain high network performance
- This process radically increases network speed (and decreases power consumption) in production



Before pruning

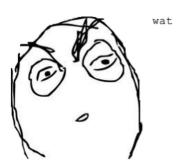


After pruning

- Network pruning (continued)
 - What if we take the pruned network (i.e. the one with 80-90% of connections dropped), reset its weights to their original initialization values, and try to train the network again?

Do you think this will work?

- Network pruning (continued)
 - What if we take the pruned network (i.e. the one with 80-90% of connections dropped), reset its weights to their original initialization values, and try to train the network again?
 - Conventional wisdom says: "that network, because it's smaller, won't learn as well—you need the extra connections to allow the network to find a good local optimum"
 - What actually happens: the network trains as well, or sometimes even better, than the full network!



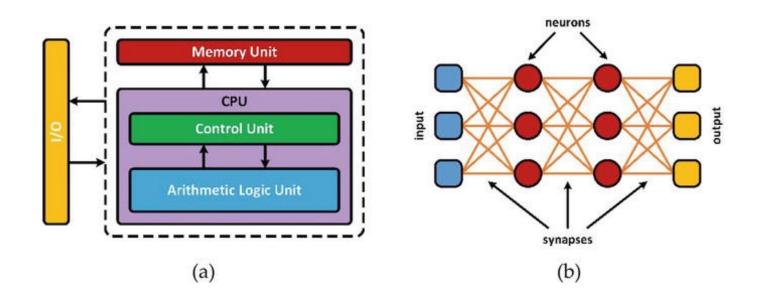
- Network pruning (continued)
 - What's going on??
 - The current working hypothesis: every big network contains within it some smaller sub-network(s) that, when *combined with the right weight initialization*, performs as well or better than the big network.
 - Finding one of these sub-networks has been compared to "finding the winning lottery ticket"...
 - ...so this is known as the Lottery Ticket Hypothesis
 - It's an open area of research

- Network pruning (continued)
 - However, there is a bias-complexity tradeoff...
 - While this prevents the model from overfitting and ensures the model is more generalizable for future unseen data,
 - the model becomes smoother and may become more susceptible to underfitting
 - May amplify already-existing biases in deep learning networks

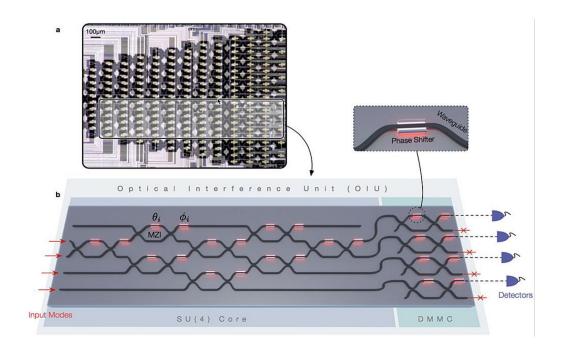
- More efficient physical substrates for neural networks
 - The massive parallelism of GPUs has proven to be useful for training deep networks, but GPUs are also power hungry.
 - Are there other physical computing devices that might also be a good fit for the kinds of computations that deep nets perform?

- Neuromorphic computation
 - "neuro-": brain- or neuron-like
 - "-morphic": having the shape or structure of
- What if we could make a piece of hardware (i.e. a chip) that interfaces with a computer and creates a physical neural network?
 - i.e. instead of simulating 'neurons' with digital computers, simulate them with analog circuits
 - Potentially 1000s of times more energy- and space-efficient than GPUs
 - A specific instance of an ASIC ("application-specific integrated circuit")
 - Other domains where this has been successful: cameras have specialized processing chips called ISPs ("image signal processors")

- Physical connection \cong connection between two layers in a network
- When electricity flows through, the connection is reinforced
 - Allows training / updating weights directly in hardware
- Proposed designs use *memristors* (memory + resistors) to implement connections



- Optical neural networks
 - What if we replaced the electrons flowing through our neuromorphic chips with photons?
 - Tiny amount of energy measured in attojoules (millionth of a trillionth of a joule, 10^{-18} joules)



Any questions?

Future Directions (long-term)

- Neuromorphic computing is also an <u>open area of research</u>
- Optical neural networks are also an <u>open area</u> <u>of research</u>

nature > world view > article

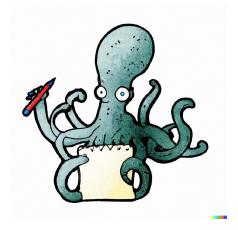
WORLD VIEW | 20 February 2024

Generative Al's environmental costs are soaring — and mostly secret

First-of-its-kind US bill would address the environmental costs of the technology, but there's a long way to go.

Recap

Scaling deep learning systems



Sustainable deep learning

Scaling across processors

Scaling across GPUs

Scaling across machines

Near-term solutions

Mid-term solutions (Network pruning)

Long-term solutions (Hardware upgrade)

