Interpretability

CSCI 1470/2470 Spring 2024

Ritambhara Singh

March 18, 2024 Monday

ChatGPT prompt "minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner"

Deep Learning

Machine Learning and Interpretability

Accuracy

Deep Nets are "Black Box" Models

- What do the hidden layers of networks actually learn?
 - **Image recognition:** What do the many thousands of filters actually represent??
 - **Natural language processing**: What does the RNN hidden state actually store??

Example: What do CNN filters look like?

Example: What do CNN filters look like?

...which leads to situations like this:

6

Deep Learning has an *interpretability* problem

Maybe not such a big deal if we're just classifying breakfast foods...

...but what if the decision is *really* important?

What if the decision is *really* important?

From <u>Cruz-Roa et al., 2013</u>

What if the decision is *really* important?

 How can a human (e.g. a doctor) trust that a network is making a sensible decision (e.g. a patient has the flu, and *not* strep, mono, or pneumonia)?

Figure 1. Explaining individual predictions to a human decision-maker. Source: Marco Tulio Ribeiro.

Model Interpretability

- Broadly, *interpretability* refers to ways of understanding/measuring how a model made a decision
- Can take the form of visualizations, summary statistics, metrics, ...
- A whole subfield of study: *Interpretable DL/AI*

Making Cancer Predicting Interpretable

Simultaneously learn to predict which regions of the tissue are cancerous (so a person can look and see if that makes sense)

Making Cancer Predicting Interpretable

Simultaneously learn to predict which regions of the tissue are cancerous (so a person can look and see if that makes sense)

True class	Cancer	Cancer	Cancer	Non-cancer	Non-cancer	Non-cancer
Input image						
Pred/Prob	Cancer (0.82)	Cancer (0.96)	Cancer (0.79)	Non-cancer (0.27)	Non-cancer (0.08)	Non-cancer (0.03)
Digital staining						

Task formulation

Which features in X are most important for the model prediction Y?

Task formulation

Which pixels are most important for classification?

Task formulation

Which words/characters are most important for classification?

Today's goal – learn about interpretation in DL

(1) Model architecture based methods (CNNs and RNNs)

(2) Gradient-based methods

(3) Model agnostic methods

Note: categorization done loosely by me

Today's goal – learn about interpretation in DL

(1) Model architecture based methods (CNNs and RNNs)

(2) Gradient-based methods

(3) Model agnostic methods

Identifying image regions that influence classification result

<u>Global Average Pooling</u>: Average all the pixels in the last feature map to produce a flat vector, then feed that through a linear layer to produce class logits

• A weighted sum of the last feature maps, according to the weights of the linear layer, localizes the region that leads to the classification

Deconvolution

Map filter activations back to the input pixel space, showing what input pattern originally caused a given activation in the feature maps.

Perform this mapping with a <u>Deconvolutional Network</u> (decovnet).

Decovnet: a convnet model that uses the same components (filtering, pooling) but in reverse, so instead of mapping pixels to features it does the opposite.

Visualizing and Understanding Convolutional Networks

Interpreting RNNs

Pick one entry (cell) of the hidden state, highlight characters that cause that cell to take on a high value

• This is a *character-level language model*, not a word-level one

Interpreting RNNs

all the statement and in state successions

Pick one entry (cell) of the hidden state, highlight characters that cause that cell to take on a high value

• This is a *character-level language model*, not a word-level one

Cei	en that turns on inside quotes:																																																		
" Y	0	u	m	e a	n	t	: 0		i	m p	1	У	t	h	a t	E	I		h a	v	е	r	0 1	t	h :	i n	g	1	tο		e a	ιt	(D U	t		o f	•	•			0	n	1	: h	е					
со	n	t r	a	гy	,]		С	a	n	S	u	рр	1	У	У	0	u	h	ιi	t	h	e	v	e	rу	/t	h :	in	g	e	e v	e r	1	i	f	У	0 1	u		wa	l n	t	t	: 0		g	iν	e		
di	nı	n e	r	р	a	r t	: i	е	S	, "		W	a r	m	1)	1	r	e	p 1	. i	е	d	C	h	i	c h	ı a	g	o v	,	W	<i>i</i> h	0	t	r	i	ec	1	b	У	e	e v	е	ry	1	W	0	r c		h	е
s p	0	k e		t o	1	pr	0	v	e	h	i	S	C	W	n	r	e	C	ti	.t	u	de	•	a	n	d	t	h	e r	е	fo	r	е	i	. m	a	gj	. n	е	d	K	(u	t	u z	: 0	V		t c)	b	е
a n	i	n a	t	e d		by	1	t	h	e	S	a	m e		de	e s	i	r	е.																																
			_				_								_	_			_	_																	_				_		_	_				_			_
ĸu	tı	μz	0	ν,		st	ı r	u	g	gi	. n	g	h	1	S	S	h	0	u 1	d	е	r s	5,		r	e p)1	1 (e d		Wi	. t	h	h	1	S	S	i u	b	t.	1 6	•	p	e r	ı e	t	r	a t	. 1	nç	g
SM	1	l e			I	n	1 e	a	n	t	m	e	r e	1	V	t	0	1	S a	V		W	1 a	t		I	S	a	id																						

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Interpreting RNNs

Pick one entry (cell) of the hidden state, highlight characters that cause that cell to take on a high value

• This is a *character-level language model*, not a word-level one

Temporal output (RNNs)

Track the prediction of the RNN for one hidden unit at a time

Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks

Today's goal – learn about interpretation in DL

(1) Model architecture based methods

(2) Gradient-based methods

(3) Model agnostic methods

Saliency maps

Which pixels are most important for classification?

Saliency maps

$$S_{+}(X) \approx w^{T}X + b = \sum_{i=1}^{|X|} w_{i}x_{i}$$

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Saliency maps

$$S_{+}(X) \approx w^{T}X + b = \sum_{i=1}^{|X|} w_{i}x_{i}$$

$$w = \frac{\partial S_+}{\partial X} \bigg|_{X_0} = \text{``saliency map''}$$

How can we calculate this gradient?

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Backpropagation is back!

$\Delta w_{j,i} = -\alpha \frac{\partial L}{\partial w_{j,i}} = -\alpha \cdot \frac{\partial L}{\partial p_a} \cdot \frac{\partial p_a}{\partial l_j} \cdot \frac{\partial l_j}{\partial w_{j,i}}$

Saliency maps work well

https://medium.datadriveninvestor.com/visualizing-neural-networks-using-saliency-maps-in-pytorch-289d8e244ab4

Saliency maps can also fail

Assessing the (Un)Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging

Saliency maps can also fail

What could be going wrong?

Assessing the (Un)Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging

Backpropagation through activation functions

Gradient * Input

Solves thresholding problem

Integrated gradients

Image courtesy: http://theory.stanford.edu/~ataly/Talks/sri_attribution_talk_jun_2017.pdf

Integrated gradients

DeepLIFT

• Explain "difference from reference value" of output in terms of "difference from reference value" of inputs

DeepLIFT

- Explain "difference from reference value" of output in terms of "difference from reference value" of inputs
- Target neuron t with diff-from-ref Δt

Slide courtesy: https://drive.google.com/file/d/0B15F_QN41VQXbkVkcTVQYTVQNVE/view

DeepLIFT

https://github.com/slundberg/shap

shap.DeepExplainer

class shap.DeepExplainer(model, data, session=None, learning_phase_flags=None) %

- Explain "difference from reference value" of output in terms of "difference from reference value" of inputs
- Target neuron t with diff-from-ref Δt
- "Blame" Δt on $\Delta x_1 ... \Delta x_n$
- Assign contributions $C_{\Delta x_i \Delta t}$ such that:

$$\sum_{i=1}^{n} C_{\Delta x_i \Delta t} = \Delta t$$

Any questions?

DeepLIFT (and Shapley values)

https://www.sia-partners.com/en/news-and-publications/from-our-experts/interpretable-machine-learning

DeepLIFT (and Shapley values)

Coalitions

https://www.sia-partners.com/en/news-and-publications/from-our-experts/interpretable-machine-learning

DeepLIFT (and Shapley values)

Shapley value not only considers the ability of each member, but also takes into account the cooperation among the members.

https://www.sia-partners.com/en/news-and-publications/from-our-experts/interpretable-machine-learning

Today's goal – learn about interpretation in DL

(1) Model architecture based methods

(2) Gradient-based methods

(3) Model agnostic methods

Next time!

For in-depth reading refer to: <u>https://christophm.github.io/interpretable-ml-book/</u>