Interpretability cont. + Unsupervised learning

Instructor office hours are cancelled this week!
No class this Friday!
Interpretation in DL

(1) Model architecture based methods

(2) Gradient-based methods

(3) Model agnostic methods
Testing different gradient-based methods

Model parameter randomization test
compares the output of a saliency method on a trained model with the output of the saliency method on a randomly initialized untrained network of the same architecture.

Data randomization test
compares a given saliency method applied to a model trained on a labeled data set with the method applied to the same model architecture but trained on a copy of the data set in which we randomly permuted all labels.

“We find that reliance, solely, on visual assessment can be misleading.

Through extensive experiments we show that some existing saliency methods are independent both of the model and of the data generating process.”

Sanity Checks for Saliency Maps
Interpretation in DL

(1) Model architecture based methods

(2) Gradient-based methods

(3) Model agnostic methods
Task formulation

Which pixels are most important for classification?

What is the simplest thing that comes to mind?
Perturbation-based methods

- Let’s **perturb inputs**...
- omit or change words/parts of images, change word embedding values, etc.
- ...observe changed outputs...

![Image of a dog with a perturbed area marked]

“dog”
Perturbation-based methods

- Let’s **perturb inputs**...
- ommit or change words/parts of images, change word embedding values, etc.
- ...observe changed outputs...
LIME

- **Local Interpretable Model-Agnostic Explanations (LIME)**
 - “Model-Agnostic”: treats every model as a black-box
- Let’s **perturb inputs**...
 - omit or change words/parts of images, change word embedding values, etc.
- ...**observe changed outputs**...
- ...and **approximate the underlying model** using a simple, interpretable model (like a linear classifier)
 - Interpretable because in $\sum w_i x_i$, the weights say “how much a particular input matters”
LIME example

- What makes this picture of a tree frog “tree frog”-y to a neural network?
LIME example

- Perform a superpixel segmentation on the image
- Interpretable chunks in the image may be part of multiple superpixels
- But no superpixel will contain multiple interpretable parts
LIME example

- Different combinations of chunks put through the net yield different probabilities
- Learn a linear model to predict the probability from these different combos
- Chunks with high weight in the linear model “matter more” for the classification result

Can we think of disadvantages of perturbation-based methods?
Attention as interpretation method
Roadmap

Supervised machine learning

- Perceptron
- Fully Connected Neural Networks
- Convolutional Neural Networks
- Language models
- Recurrent Neural Networks
- Transformers (Seq2seq)
Recap: What is Machine Learning?

Input: X

Output: Y

"Cooking?"

Function: f

f(X) → Y
Recap: What is Machine Learning?

Supervised Learning

Input: X

Learned function: f

Output: Y

"Cooking?"

f(X) → Y
What if you don’t have any labels?

Input: X

Unsupervised Learning

What can you learn from just input data without labels?
Today’s goal – learn about unsupervised learning using deep learning models

(1) Unsupervised Learning

(2) Auto-encoders (AE)
Unsupervised Learning

• What can we learn from input data when there are no labels?
 • We can only analyze the structure of the data itself
Clustering

The organization of unlabeled data into similarity groups called “clusters.”

A cluster is a collection of data items which are “similar” between them, and “dissimilar” to data items in other clusters.
How does the machine do the clustering?

Data:

1. Proximity measure, either
 - similarity measure $s(x_i, x_k)$: large if x_i, x_k are similar
 - dissimilarity (or distance) measure $d(x_i, x_k)$: small if x_i, x_k are similar

2. Criterion function to evaluate a clustering
 - Good clustering
 - Bad clustering

3. Algorithm to compute clustering
 - For example, by optimizing the criterion function
Data in high dimension

Data:

What about an image?
Curse of dimensionality in clustering

Adding a dimension stretches the points across that dimension, pushing them further apart.

The points continue to spread out, when more dimensions are being added, until they are equidistant from each other and distance is not very meaningful.

(a) 11 Objects in One Unit Bin (b) 6 Objects in One Unit Bin (c) 4 Objects in One Unit Bin
Dimensionality Reduction

- Represent the data with fewer dimensions
- The key idea: While the data may exist in a high dimensional space, it may actually lie along a lower dimensional subspace
 - Ex: data in \mathbb{R}^3 may lie along a plane
 - i.e. the \textit{intrinsic dimensionality} of the data is actually 2 (not 3)
Dimensionality Reduction using projection

- Data may not lie exactly on a lower-dimensional subspace
- Can still represent it fairly well (with some degree of error)

2D data projected to 1 dimension
Dimensionality Reduction: Why?

• Lots of benefits to making the data lower-dimensional
 • Many clustering algorithms behave better in lower dimensions
 • Takes less storage/memory → if you’re trying to analyze a huge dataset
 • More efficient to search using approximate nearest neighbor algorithms
 • Easier to **visualize** (if you reduce the data to 2 or 3 dimensions)

Any questions?
Dimensionality Reduction: Visualization

\mathbb{R}^{784} → \mathbb{R}^2

https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df
Dimensionality Reduction: Visualization

https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df
Dimensionality Reduction: Visualization

Have you already heard of a dimensionality reduction method?

https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df
Principal Component Analysis (PCA)

How to project 2D data down to 1D?
Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes
Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes
(We could of course flatten to the other red axis)
Principal Component Analysis (PCA)

How to project 2D data down to 1D?

What is the issue here?

What can we do?

But notice that most of the variability in the data is not aligned with the red axes!

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence.pdf
Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Most variability is along this green direction

But notice that most of the variability in the data is not aligned with the red axes!
Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Most variability is along this green direction

But notice that most of the variability in the data is not aligned with the red axes!

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence.pdf
Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Most variability is along this green direction.
Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Most variability is along this green direction.

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence.pdf
Principal Component Analysis (PCA)

How to project 2D data down to 1D?

The idea of PCA actually works for 2D \rightarrow 2D as well (and just involves rotating, and not “flattening” the data)
Principal Component Analysis (PCA)

How to project 2D data down to 1D?
How to rotate 2D data so 1st axis has most variance

before “flattening”

Most variability is along this green direction

The idea of PCA actually works for 2D → 2D as well (and just involves rotating, and not “flattening” the data)

2nd green axis chosen to be 90° (“orthogonal”) from first green axis

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence.pdf
Principal Component Analysis (PCA)

- Finds top k orthogonal directions that explain the most variance in the data
Principal Component Analysis (PCA)

- Finds top k orthogonal directions that explain the most variance in the data
 - 1st component: explains most variance along 1 dimension
 - 2nd component: explains most of remaining variance along next dimension that is orthogonal to 1st dimension
- …
Principal Component Analysis (PCA)

- Finds top k orthogonal directions that explain the most variance in the data
 - 1st component: explains most variance along 1 dimension
 - 2nd component: explains most of remaining variance along next dimension that is orthogonal to 1st dimension
 - ...
- “Flatten” data to the top k dimensions to get lower dimensional representation (if $k < \text{original dimension}$)

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence.pdf

Any questions?
3D example from:

https://setosa.io/ev/principal-component-analysis/
PCA reorients data so axes explain variance in “decreasing order”
→ can “flatten” (project) data onto a few axes that captures most variance
Limitations of PCA
Limitations of PCA

2D Swiss Roll
Limitations of PCA

2D Swiss Roll

PCA would just flatten this thing and lose the information that the data actually lives on a 1D line that has been curved!
Limitations of PCA

https://www.andrew.cmu.edu/user/georgech/95-865/Lectures/Lecture%20-%2003_essence.pdf
How to dimension-reduce gnarly datasets?

• The Swiss Roll has an intrinsic dimensionality of 1
 • i.e. “how far along the curve a point is”

• But PCA can’t figure this out because the projection from \mathbb{R}^2 to \mathbb{R}^1 is non-linear
 • i.e. “unroll” the curve and lay it flat along a number line

• How can we compute non-linear projections?
"I hear these neural nets are pretty good at learning non-linear functions"

Can we use a neural net to learn a non-linear projection to a lower-dimensional space?
A nonlinear projection neural net

- We could just use a regular neural net architecture (e.g. fully connected) to take a vector input \mathbf{x} and output a lower-dimensional vector \mathbf{z}

- But how do we train this thing?
- What’s the loss for “be a good nonlinear projection of \mathbf{x}?”
A nonlinear projection neural net

- Idea: a compact representation z is a good non-linear projection of x if it’s possible to reconstruct x well from z

- What loss function makes sense here?
 - $L(x, \bar{x}) = (x - \bar{x})^2$ (squared error loss)

- This architecture is called an autoencoder
Autoencoder

- Reconstruction loss: $L(x, \bar{x}) = (x - \bar{x})^2$

How is this different from the Seq2seq encoder/decoder setup?
Autoencoder for MNIST

\[x \rightarrow \text{"Encoder"} \rightarrow \text{Compact Representation} \rightarrow \text{"Decoder"} \rightarrow \overline{x} \]

"Encoder" and "Decoder" represent the encoding and decoding processes, respectively. The compact representation (\(z \)) lies between the encoder and the decoder.
This visualization? Autoencoder

https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df
Other Autoencoder applications

Denoising Autoencoder

Input: Noisy Images

Output: Restored Image
Recap

Model agnostic interpretation

Unsupervised Learning

Auto-encoders (AEs)

LIME (or perturbation-based)

Attention (inbuilt interpretation)

Learning the structure in the data

Clustering

Dimensionality reduction using PCA

Perform non-linear dimensionality reduction

Architecture and loss function

Most variability is along this green direction

Original Image
Interpretable Components