
an LLM-powered CS1470 assistant,
augmented with:

(ah-tuh)

Available for use starting today (HW5) at

talktoata.com
Terms and conditions apply

Questions or feedback? Reach out to us at team@talktoata.com

Course Information

Stencil Code

Assignment
Specifications

Deep Learning
CSCI 1470/2470

Spring 2024

Ritambhara Singh

April 01, 2024
Monday

Autoencoders and Variational Autoencoders

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Make sure to submit mid-semester feedback!

Review: Supervised v/s Unsupervised Learning

https://www.cs.ubc.ca/~lsigal/532L/Lecture11.pdf

Review: Unsupervised Learning

https://www.cs.ubc.ca/~lsigal/532L/Lecture11.pdf

Review: Unsupervised Learning

https://www.cs.ubc.ca/~lsigal/532L/Lecture11.pdf

Review: Autoencoder
• Reconstruction loss: 𝐿 𝒙, $𝒙 = 𝒙	 − $𝒙 !	

6

Compact
Representation

𝒙
𝒛

“Encoder” “Decoder”

Reconstruction

#𝒙

?

Today’s goal – learn about variational
autoencoders (VAEs)

(1) Convolutional AEs

(2) Generative models

(3) Variational Autoencoders (VAEs)

Convolutional Autoencoders
• CNNs are great for image processing in Neural Networks
• How can we build a convolutional autoencoder?

8

linear layer softmax

9

64

64

5

5

3

60

60

3

3

1

ReLU
+

Pool
ReLU

+
Pool

3

Convolutional Autoencoders: Encoding

Same as Conv Nets from before:

9

3

9

64

5

5

3
60

3

3

1

ReLU
+

Pool
ReLU

+
Pool

Encoding

64
60

Encoded
Info

Autoencoders: Decoding

• Convolution as we know it only keeps resolution same or decreases it
• How do we go up in resolution?

10

? ?

Autoencoders: Transpose Convolution
• Convolution can be viewed as a matrix multiplication
• How do we represent it this way?

11

1 2 3

4 5 6

7 8 9

57 60

66 61

2 1 0 3

0 0 1 2

3 1 2 0

0 2 2 1

=?
Input

OutputKernel

Autoencoders: Transpose Convolution
Step 1: Flatten the image into a column vector

12

2 1 0 3

0 0 1 2

3 1 2 0

0 2 2 1

2
1
0
3
0
0
1
2
3
1
2
0
0
2
2
1

Autoencoders: Transpose Convolution
• Step 2: Unroll the kernel/filter

13

1 2 3

4 5 6

7 8 9

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

Autoencoders: Transpose Convolution
Step 3: Matrix multiply
unrolled kernel with flattened
image

14

2
1
0
3
0
0
1
2
3
1
2
0
0
2
2
1

=

57

50

66

61

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

Autoencoders: Transpose Convolution
Each row of the convolution
matrix corresponds to a dot
product between filter and
image patch:

15

2
1
0
3
0
0
1
2
3
1
2
0
0
2
2
1

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

2 1 0 3

0 0 1 2

3 1 2 0

0 2 2 1

Autoencoders: Transpose Convolution
Each row of the convolution
matrix corresponds to a dot
product between filter and
image patch:

16

2
1
0
3
0
0
1
2
3
1
2
0
0
2
2
1

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

2 1 0 3

0 0 1 2

3 1 2 0

0 2 2 1

Autoencoders: Transpose Convolution
Each row of the convolution
matrix corresponds to a dot
product between filter and
image patch:

17

2
1
0
3
0
0
1
2
3
1
2
0
0
2
2
1

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

2 1 0 3

0 0 1 2

3 1 2 0

0 2 2 1

Autoencoders: Transpose Convolution
Each row of the convolution
matrix corresponds to a dot
product between filter and
image patch:

18

2
1
0
3
0
0
1
2
3
1
2
0
0
2
2
1

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

2 1 0 3

0 0 1 2

3 1 2 0

0 2 2 1

Autoencoders: Transpose Convolution
Step 4: Finally reshape the output back into a
grid

19

57

50

66

61

57 60

66 61

Final Output
Image

Autoencoders: Transpose Convolution

20

2
1
0
3
0
0
1
2
3
1
2
0
0
2
2
1

=

57

50

66

61

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

Autoencoders: Transpose Convolution

To upsample an image, we just
do the inverse of this operation.

What matrix do we use?

The transpose of the big
convolution matrix

21

1 0 0 0
2 1 0 0
3 2 0 0
0 3 0 0
4 0 1 0
5 4 2 1
6 5 3 2
0 6 0 3
7 0 4 0
8 7 5 4
9 8 6 5
0 9 0 6
0 0 7 0
0 0 8 7
0 0 9 8
0 0 0 9

1

0

2

1

=

1
2
3
0
6
10
14
3
15
22
26
6
14
23
26
9

Input image
flattened to
column vector

Autoencoders: Transpose Convolution

Finally, reshape the output
vector into a grid to get the final
output image:

22

1
2
3
0
6
10
14
3
15
22
26
6
14
23
26
9

1 2 3 4

6 10 14 3

15 1 22 26

14 23 26 9

Final output image

Transpose Convolution in Tensorflow

tf.nn.conv2d_transpose(input, filters, output_shape, strides, padding=’SAME’)

23

Documentation here: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d

4D tensor of shape [batch, height,
width, in_channels]

4-D Tensor with shape
[height, width, output_channels, in_channels]

length 4 1D tensor representing
the output shape.

Strides along
each dimension
(list of integers)

String
representing

type of padding

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d

Transpose Convolution in Tensorflow

tf.nn.conv2d_transpose(input, filters, output_shape, strides, padding=’SAME’)

24

Why do we need to specify output size?

Specifying Output Size

• An image can be the result of the same
convolution on images of different resolution

• We need to specify which one we want.

25

57 60

66 61

2 1 0 3

0 0 1 2

3 1 2 0

0 2 2 1

2 1 0 3 0

0 0 1 2 0

3 1 2 0 0

0 2 2 1 0

0 0 0 0 0

1 2 3

4 5 6

7 8 9

Kernel

Transpose Convolution in Keras

tf.keras.layers.Conv2DTranspose(filters, kernel_size, strides, padding=’SAME’)

26

Documentation here: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2DTranspose

Note: Output Shape is inferred

Number of filters
(Integer) Size of Convolution

Window (tuple)
String

representing
type of padding

Strides along
each dimension
(list of integers)

Any questions?

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2DTranspose

Today’s goal – learn about variational
autoencoders (VAEs)

(1) Convolutional AEs

(2) Generative models

(3) Variational Autoencoders (VAEs)

Unsupervised Learning

https://www.cs.ubc.ca/~lsigal/532L/Lecture11.pdf

Unsupervised Learning

https://www.cs.ubc.ca/~lsigal/532L/Lecture11.pdf

Generative models

Discriminative v/s Generative models

Discriminative v/s Generative models

Discriminative v/s Generative models

𝑥!

𝑥"

𝜌(𝑥)

Generative Modeling Is:

1. A procedure for (approximately) sampling from
the distribution from which a dataset was
drawn

33

𝑥′ ∼ 𝑝(.)

Training dataset New data point

*Probability density is the
relationship between observations
and their probability.

𝑥!

𝑥"

𝜌(𝑥)

Generative Modeling:

1. A procedure for (approximately) sampling from
the distribution from which a dataset was
drawn

2. A procedure for (approximately) evaluating the
probability density of a datapoint under the
distribution from which a dataset was drawn

34

𝑥′ ∼ 𝑝(.)

𝜌(𝑥′)

Training dataset New data point

*Probability density is the
relationship between observations
and their probability.

These two views are both useful

1. A procedure for (approximately) sampling from
the distribution from which a dataset was
drawn

2. A procedure for (approximately) evaluating the
probability density of a datapoint under the
distribution from which a dataset was drawn

35

Application: outlier detection

Training dataset

𝑥!

𝑥"

𝜌(𝑥)

New data point
(inlier)

New data point
(outlier)

𝜌 𝑥′ = large

𝜌 𝑥′ = tiny

Application: visual creativity

These two views are both useful

1. A procedure for (approximately) sampling from
the distribution from which a dataset was
drawn

2. A procedure for (approximately) evaluating the
probability density of a datapoint under the
distribution from which a dataset was drawn

36

Application: outlier detection

Training dataset

𝑥!

𝑥"

𝜌(𝑥)

New data point
(inlier)

New data point
(outlier)

𝜌 𝑥′ = large

𝜌 𝑥′ = tiny
The Guardian

Application: things are getting more
complicated!

https://www.theguardian.com/fashion/2023/apr/03/ai-virtual-models-fashion-brands

What are some example generative models?

• Any probability distribution can be a generative
model

• You already know some of these!

• E.g. The Gaussian Distribution

• 𝑝 𝑥	 𝜇, 𝜎) = 𝒩(𝜇, 𝜎)(𝑥) = 0
123!

𝑒4
"#$!

!%!

• Sampling:
• Sample from the unit normal distribution → 	𝑟 ∼ 𝒩 0, 1
• Return 𝜇 + 𝑟𝜎

37

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

Disadvantages of Gaussian distribution

• Can only represent distributions with a single
mode
• What if the distribution has multiple “peaks?”
• E.g. book prices (concentrates around different

price points if it’s hardcover, paperback, e-book,
...)

38

Better: Mixture of Gaussians

• A linear combination of multiple
individual Gaussian distributions
• 𝑝 𝑥	 𝑤, 𝜇, 𝜎) = ∑5𝑤5𝒩(𝜇5, 𝜎5)(𝑥)
• Sampling:

• Sample from the discrete weight distribution
𝑤 to choose a Gaussian

• Sample from that Gaussian as before

39

What about something like this?

• This doesn’t look like a linear
combination of Gaussians...

• ...but maybe it can be expressed
as a nonlinear function of
Gaussians?

40

What can we do?

“I hear these neural nets are
pretty good at learning non-linear

functions” J

41

A Neural Generative Model

• Input: a point 𝑧 ∈ ℝ. drawn from a normal distribution 𝒩(𝜇, 𝜎)
• Output: a point 𝑥 ∈ ℝ/ distributed according to some more complex

distribution

42

Generator
Network

Any questions?

A Neural Generative Model

• Input: a point 𝑧 ∈ ℝ. drawn from a normal distribution	𝒩(𝜇, 𝜎)
• Output: a point 𝑥 ∈ ℝ/ distributed according to some more complex

distribution

43

Generator
Network

What are some
distributions that

look like this?

A Neural Generative Model

• Input: a point 𝑧 ∈ ℝ. drawn from a normal distribution 𝒩(𝜇, 𝜎)
• Output: a point 𝑥 ∈ ℝ/ distributed according to some more complex

distribution

44

Generator
Network

The distribution of human faces

A Neural Generative Model

• Great! So...how do we train this thing?
• Let’s modify our autoencoder to achieve this

45

Generator
Network

The distribution of human faces

Autoencoder

46

0.2
-.3
1.2
0.5
1.2
-.5

Decoder

Output
Input

Encoder

Let’s think for a bit – how to modify
the autoencoder to make it a

generative model?

Variational Autoencoders (VAEs)

47

0.2
-.3
1.2
0.5
1.2
-.5

Generator

Output
Input

Encoder

Variational Autoencoders (VAEs)

• This looks almost exactly like an autoencoder...
• ...except that this bottleneck vector is randomly sampled
• We’ll see how in a few slides

48

0.2
-.3
1.2
0.5
1.2
-.5

Random Vector

(sampled from
normal

distribution)

Generator

Output

Encoder

Input

Variational Autoencoders (VAEs)

• In fact, the encoder can produce multiple different random vectors...
• ...which then lead to different outputs which are variants of the input

49

0.2
-.3
1.2
0.5
1.2
-.5

Random Vector
(sampled from

normal
distribution)

GeneratorEncoder

Input

0.7
-.4
1.8
0.1
1.0
-.6

0.1
-.2
1.6
0.9
1.3
-.1

Output

Variational Autoencoders (VAEs)

• Why do this?
• We’ll see shortly how this setup allows for a nice, stable learning algorithm
• (It’s actually just a small modification to how autoencoders are trained)

50

0.2
-.3
1.2
0.5
1.2
-.5

Random Vector
(sampled from

normal
distribution)

GeneratorEncoder

Input

0.7
-.4
1.8
0.1
1.0
-.6

0.1
-.2
1.6
0.9
1.3
-.1

Output

Building up the VAE Architecture

If we were to describe an autoencoder functionally:

Output = Decoder(Encoder(Input))

51

Latent Representation

EncoderInput Latent
Representation

Decoder Output

*Latent representation ~ compressed representation

Building up the VAE Architecture

For variational autoencoders, we also do a random sampling operation
at the bottleneck

Output = Decoder(random_sample(Encoder(Input)))

52

EncoderInput Latent
Representation

Decoder Output
Random

Sampling of
Latent Space

How does random sampling in latent space
lead to variation?

53

EncoderInput Latent
Representation

Decoder Output
Random

Sampling of
Latent Space

Encoder
Output

Latent Space

Sampled
Vector

Decoder

Decoder

• The random sampling should be
designed to produce random
points in latent space that are
close to the output of the
encoder

• Nearby points in the latent space
should decode to similar images

How should random_sample be defined?

54

EncoderInput Latent
Representation

Decoder Output
Random

Sampling of
Latent Space

Output = Decoder(random_sample(Encoder(Input)))
• We want the sample to be close to the encoder output
• One option: sample from a Gaussian centered at Encoder(Input)

What can we modify?

How should random_sample be defined?

55

EncoderInput Latent
Representation

Decoder Output

Output = Decoder(random_sample(Encoder(Input)))
• We want the sample to be close to the encoder output
• One option: sample from a Gaussian centered at Encoder(Input)
• Use two dense layers to convert the encoder output into the mean

and standard deviation of the Gaussian

Dense

Dense

𝜇

𝜎

𝒩(𝜇, 𝜎)

How should random_sample be defined?

56

EncoderInput Latent
Representation

Decoder Output

Dense

Dense

𝜇

𝜎

𝒩(𝜇, 𝜎)

Any questions?

Training a VAE
Two goals:
1. Reproduce an output similar to the input (Input ≈ Output)
2. Have some variation in our output (Input Output)

• Seems like two conflicting goals!
• How do we resolve these two goals?

57

EncoderInput Latent
Representation

Decoder Output

Dense

Dense

𝜇

𝜎

𝒩(𝜇, 𝜎)

Weighted Combination of Losses

= loss associated with producing output similar to input
 = loss associated with producing output with some variation to
input

Total Loss:

58

EncoderInput Latent
Representation

Decoder Output

Dense

Dense

𝜇

𝜎

𝒩(𝜇, 𝜎)

Recap
Convolutional AEs

Generative modeling – formulation
and applications

Probability distributions = generative models

Generative
Modeling

Generative modeling for complex
distributions

VAE architecture

Variational
Autoencoders

(VAEs)
Modifying AEs

Extra material

More reading on Transpose Convolution

https://towardsdatascience.com/understand-transposed-convolutions-and-build-your-own-transposed-convolution-layer-from-scratch-4f5d97b2967

Caution: Checkerboard Artifacts
• Transpose convolution causes artifacts in output images

61Great visual (and more!) from this article: https://distill.pub/2016/deconv-checkerboard/

https://distill.pub/2016/deconv-checkerboard/

Caution: Checkerboard Artifacts
• Transpose convolution causes artifacts in output image
• Why? Some pixels get written to more often than others
• Is there a better way to upsample?

62Great visual (and more!) from this article: https://distill.pub/2016/deconv-checkerboard/

https://distill.pub/2016/deconv-checkerboard/

Eliminating checkerboard artifacts

Step 1: Upsample using nearest neighbor interpolation:

63

1 2

3 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Pixels in upsampled
image are assigned pixel
value of CLOSEST pixel in
original image

Eliminating checkerboard artifacts

Step 2: Perform a convolution with SAME padding on the upsampled
image

64

20

20

3

Upsample
(Nearest Neighbor

Interpolation)

5

5

3

ReLU
+

Pool

3

200

200 200

200

3

Output
ImageInput

Image

Dealing With it in Tensorflow

Layer to upsample the image by a factor of 5 in x and y using nearest
neighbor interpolation

tf.keras.layers.UpSampling2D(size=(5, 5), interpolation=’nearest’)

Do a convolutional layer on the result

tf.keras.layers.Conv2D(filters = 1, kernel_size = (10,10), padding = “SAME”)

65

Checkerboard Artifacts Resolved

66Great visual (and more!) from this article: https://distill.pub/2016/deconv-checkerboard/

With Transpose Convolution

With Resize + Convolution

https://distill.pub/2016/deconv-checkerboard/

