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(ah tu ) The key differences between LSTMs and vanilla RNNs are:

LSTMs have a cell state in addition to the hidden state. The cell state acts as a “memaory” that
Recent conversations + New O allows the LSTM to retain information over longer sequences. In contrast, RNNs only have a
hidden state.

Transiational Equivariance Explanation LSTMs have gating mechanisms - the input gate, forget gate, and output gate. These gates control

u
a n - owe I e a S S I S l a n l Mystery Homework Help the flow of information into and out of the cell state. They allow the LSTM to selectively remember
or forget information. RNNs do not have these gating mechanisms.
Difference between LSTMs and RNNs
The gating and cell state of LSTMs help overcome the vanishing gradient problem that RNNs suffer
from. In RNNS, information from earlier timesteps gets “washed out” over long sequences due to
t d . t h

are able to propagate information more effectively.

vanishing gradients, LST

For example, consider the “The dog ate the bone because it was hungry” from class. The RNN had
trouble connecting "it” to "dog” due to the long gap between them. An LSTM could store the
vant info about "dog” in its cell state and gates, and retain it to make the right prediction for

red

*it" many steps later

Does this help clarify the key dfferences? Let me know if you have any other questions!
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ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”



Review: Supervised v/s Unsupervised Learning

Unsupervised Learning

Supervised Learning

Data: (x, V) Data: x
X is data, y is label Just data, no labels!
Goal: Learn a function to map x—y Goal: Learn some underlying hidden

structure of the data

Examples: Classification,
regression, object detection, Examples: Clustering,

semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf



Review: Unsupervised Learning
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K-means clustering

This image

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf

CCO public domain

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden
Structure of the data

Examples:|Clustering,
dimensionality reduction, feature
learning, density estimation, etc.




Review: Unsupervised Learning

Unsupervised Learning

component space

PCA
gss==S = Data: x
I EERTRESSRSa 2
LR Just data, no labels!
T Goal: Learn some underlying hidden

structure of the data
dimensionality reduction |
Examples: Clustering,
dimensionality reduction,| feature
learning, density estimation, etc.

This image is CCO public domain

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf



Review: Autoencoder

true label: 0

e Reconstruction loss: L(x,X) = (x — x)?

Compact
Representation
Z
Reconstruction
X > > > > X
J | J
| |

“Encoder” “Decoder”




Today’s goal — learn about variational
autoencoders (VAEs)

(1) Convolutional AEs
(2) Generative models

(3) Variational Autoencoders (VAES)



Convolutional Autoencoders

* CNNs are great for image processing in Neural Networks
* How can we build a convolutional autoencoder?
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Convolutional Autoencoders: Encoding

Same as Conv Nets from before:
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Autoencoders: Decoding

e Convolution as we know it only keeps resolution same or decreases it
* How do we go up in resolution?

10



Autoencoders: Transpose Convolution

* Convolution can be viewed as a matrix multiplication

* How do we represent it this way?
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Autoencoders: Transpose Convolution

Step 1: Flatten the image into a column vector
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 Step 2: Unroll the kernel/filter

Autoencoders: Transpose Convolution
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Autoencoders: Transpose Convolution

Step 3: Matrix multiply
unrolled kernel with flattened
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Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and

image patch:
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Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and

2
. 1
image patch: G
3
- 2
1|l2|3|Jo|Ja]5]|]6|o|]7]8]2]o]Jojojo]o 0 |
1
0 0 0 0000%2 0
ojojojojl1}j2]310]14]15]|]6]1017]18]9]0O0 3<:\>
1 3
ojojojojloj112|31]0149]1]516]0171]18]° 2 ‘
0
- 0)
2
2
1

16



Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and
image patch:
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Autoencoders: Transpose Convolution

Each row of the convolution
matrix corresponds to a dot
product between filter and

2
. 1
image patch: G
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Autoencoders: Transpose Convolution

Step 4: Finally reshape the output back into a
grid

Final Output
S7 Image
50 57160
66 ] 66 | 61
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Autoencoders: Transpose Convolution
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Autoencoders: Transpose Convolution

To upsample an image, we just
do the inverse of this operation.

What matrix do we use?

/

The transpose of the big
convolution matrix
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Autoencoders: Transpose Convolution

Finally, reshape the output
vector into a grid to get the final
output image:

Final output image
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Transpose Convolution in Tensortlow

tf.nn.conv2d transpose(input, filters, output shape, strides, padding=’'SAME’)

TN

4D tensor of shape [batch, height, length 4 1D tensor representing

A X : 4-D Tensor with shape A A Strides along String
width, in_channels] [height, width, output_channels, in_channels] the output shape. each dimension representing
(list of integers) type of padding

D O CU m e n ta tl O n h e Fel https://www.tensorflow.org/versions/r2.0/api docs/python/tf/nn/conv2d

23


https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d

Transpose Convolution in Tensortlow

tf.nn.conv2d transpose(input, filters,(output shape ) strides, padding=’'SAME’)

Why do we need to specify output size?

24



Specitying Output Size

- An image can be the result of the same

convolution on images of different resolution

- We need to specify which one we want.
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Any questions?

Transpose Convolution in Keras

tf.keras.layers.Conv2DTranspose (filters, kernel size, strides, padding=’'SAME’)

— /A

Number of filters

(Integer) Size of Convolution Strides along String
Window (tuple) each dimension representing
(list of integers) type of padding

Note: Output Shape is inferred

Documentation here: https://www.tensorflow.org/api docs/python/tf/keras/layers/Conv2DTranspose

26


https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2DTranspose

Today’s goal — learn about variational
autoencoders (VAEs)

(1) Convolutional AEs
(2) Generative models

(3) Variational Autoencoders (VAEsSs)



Unsupervised Learning

. — Unsupervised Learning
- Density estimation

) e |t Data: x

Just data, no labels!

Goal: Learn some underlying hidden
Structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning,|density estimation,|etc.

https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf



Unsupervised Learning

I Generative models I

. — Unsupervised Learning
- Density estimation

Data: x
Just data, no labels!

- Sample generation

y
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b -3 ] N
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: ol
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} . Y
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> X
| e

Training éxamples Model samples

Goal: Learn some underlying hidden
Structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning,|density estimation,|etc.
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https://www.cs.ubc.ca/~Isigal/532L/Lecturell.pdf



Discriminative v/s Generative models

Discriminative Model: Data: x
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Credit: UMich EECS498



Discriminative v/s Generative models

Discriminative Model:
Learn a probability
distribution p(y|x)

P(cat|i®¥ )
P(dog|i#d )

P(dog| i )

Discriminative model: No way for the model to
handle unreasonable inputs; it must give label

distributions for all images
Credit: UMich EECS498



Discriminative v/s Generative mode\s

Generative Model:

Learn a probability
distribution p(x)

* Generative model: All possible images compete with each other
for probability mass

» Intuition: Generation should require deep understanding! Is a
dog more likely to sit or stand? How about 3-legged dog vs 3-

armed monkey?
* Model can “reject” unreasonable inputs by assigning them small

values . .
Credit: UMich EECS498



Generative Modeling |s:

1. A procedure for (approximately) sampling from
the distribution from which a dataset was
drawn

New data point

20

05

*Probability density is the
relationship between observations
and their probability. 33

0.0
% 98 100 102 104 106 ,0 (x)
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Generative Modeling:

1. A procedure for (approximately) sampling from 2. A procedure for (approximately) evaluating the

the distribution from which a dataset was

drawn

0.16
0.14
012,

xz 0.10

0.08

0.06

x ~p() .

probability density of a datapoint under the

distribution from which a dataset was drawn

New data point

p(x)

*Probability density is the
relationship between observations
and their probability. 34



These two views are both useful

1. A procedure for (approximately) sampling from 2. A procedure for (approximately) evaluating the
the distribution from which a dataset was probability density of a datapoint under the
drawn

distribution from which a dataset was drawn

Application: visual creativity

89
2@
29

Application: outlier detection
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New data point
(inlier)

p(x") = large

New data point
(outlier)

p(x') = tiny
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These two views are both useful

1. A procedure for (approximately) sampling from 2. A procedure for (approximately) evaluating the
the distribution from which a dataset was probability density of a datapoint under the
drawn distribution from which a dataset was drawn

Application: things are getting more
(‘fiﬂﬂ?[[egg@&!‘ated inclusivity:
asnio

n turns to ‘diverse’ Al models . . . .
Application: outlier detection

Fashion brands including Levi's and Calvin Klein are having
custom Al models created to ‘supplement’ representation in
size, skin tone and age

New data point
(inlier)

p(x") = large

X2 010 |

0.08

New data point
(outlier)

0.06

p(x') = tiny

0.04

The Guardian

36


https://www.theguardian.com/fashion/2023/apr/03/ai-virtual-models-fashion-brands

What are some example generative models?

* Any probability distribution can be a generative
model

* You already know some of these!

* E.g. The Gaussian Distribution

e p(x | u,0) =N o)(x) = 1 CaI DN

e 202
e Sampling:
e Sample from the unit normal distribution - r ~ N'(0,1)
* Returnu +ro

2102

37


https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

Disadvantages of Gaussian distribution

* Can only represent distributions with a single
mode

 What if the distribution has multiple “peaks?”

* E.g. book prices (concentrates around different

price points if it’s hardcover, paperback, e-book,
..

A

38



Better: Mixture of Gaussians

* A linear combination of multiple

individual Gaussian distributions
* p(x |w,u,0) =X, wiN (u, 0;)(x)

e Sampling: 42 4
* Sample from the discrete weight distribution H1 |
w to choose a Gaussian
* Sample from that Gaussian as before 430
_2_
~42 4




What about something like this?

* This doesn’t look like a linear
combination of Gaussians...

e ...but maybe it can be expressed
as a nonlinear function of
Gaussians?

I What can we do?

40



“I'hear these neural nets are
pretty good at learning non-linear
functions” ©



Any questions?

A Neural Generative Model

* Input: a point z € R™ drawn from a normal distribution V' (u, o)

e Qutput: a point x € R™ distributed according to some more complex
distribution

Generator
‘ ‘

42



A Neural Generative Model

* Input: a point z € R™ drawn from a normal distribution V' (u, o)

e Qutput: a point x € R™ distributed according to some more complex
distribution

What are some
distributions that
look like this?

Generator
‘ ‘

43



A Neural Generative Model

* Input: a point z € R™ drawn from a normal distribution NV (u, o)

e Qutput: a point x € R™ distributed according to some more complex
distribution

The distribution of human Faces

§90¢
l@@!
Reee

Generator
‘ ‘




A Neural Generative Model

* Great! So...how do we train this thing?
* Let’s modify our autoencoder to achieve this

Generator
‘

The distribution of human Faces




Autoencoder

Let’s think for a bit — how to modify
the autoencoder to make it a
generative model?

\ 4

Output
Input




Variational Autoencoders (VAEs)

&

Y S Output

Input



Variational Autoencoders (VAEs)

* This looks almost exactly like an autoencoder...

* ...except that this bottleneck vector is randomly sampled
 We'll see how in a few slides

(0.2 )
-3
I N X .
0.5

Y S Output

Input

Random Vector
(camplpd From

normal
distribution)



Variational Autoencoders (VAEs)

* In fact, the encoder can produce multiple different random vectors...
e ...which then lead to different outputs which are variants of the input

A =
0.7
-4
1.8

o E o
1.0
6

Random Vector
(sampled from
normal
distribution)

Input



Variational Autoencoders (VAEs)

* Why do this?
* We'll see shortly how this setup allows for a nice, stable learning algorithm
* (It’s actually just a small modification to how autoencoders are trained)
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Building up the VAE Architecture

If we were to describe an autoencoder functionally:

A

Output = Decoder(Encoder(Input))

Y

Latent Representation

Input

T

Encoder

/

*Latent representation ~ compressed representation

Latent
Representation

/

Decoder

T

Output




Building up the VAE Architecture

For variational autoencoders, we also do a random sampling operation
at the bottleneck

Output = Decoder(random_sample(Encoder(Input)))

\ /

Latent Random Decoder Output

: "I Sampling of
Representation
P Latent Space

= T

Input Encoder




How does random sampling in latent space
ead to variation?

Input

T

Encoder

/

/

Latent

Representation

> RanQon1 Decoder
"I Sampling of
Latent Space
Encoder
Output Sampled
Vector
©C @ —

Decoder

\
/

Latent Space

Decoder

\

Output

« The random sampling should be
designed to produce random
points in latent space that are
close to the output of the
encoder

« Nearby points in the latent space
should decode to similar images



How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))

« We want the sample to be close to the encoder output
« One option: sample from a Gaussian centered at Encoder(Input)

I What can we modify?

\ /

Latent , Ranc}om
Sampling of
Latent Space

= T

Input Encoder Decoder | | gytput

Representation




How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))

« We want the sample to be close to the encoder output
« One option: sample from a Gaussian centered at Encoder(Input)

« Use two dense layers to convert the encoder output into the mean
and standard deviation of the Gaussian

\ /

Fxl 1
N \
Input Encoder Latent N o) | Decoder | | oyrput
Representation
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Yo

L
= T




222
How should random_sample be defined?
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Training a VAE

Two goals:

1. Reproduce an output similar to the input (Input = Output)
2. Have some variation in our output (Input # Output)

* Seems like two conflicting goals!
* How do we resolve these two goals?

\ /

AN
N \
Input Encoder Latent N(w o) | Decoder | | oytput
Representation 5
Q
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Weighted Combination of Losses

L1 = |oss associated with producing output similar to input
L2 = |oss associated with producing output with some variation to

input
L =114+ ALo
Total Loss: T
A € 0, oo

T

Oé&e U
Input Encoder Latent N(w o) | Decoder | | oytput
Representation
O@
e

/ U \

/
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Recap

Generative
Modeling

Variational
Autoencoders
(VAEs)

Convolutional AEs

Generative modeling — formulation
and applications

Probability distributions = generative models

Generative modeling for complex
distributions

Modifying AEs

Input

VAE architecture

Encoder

Latent
Representation

Decoder

Output




Extra material

More reading on Transpose Convolution



https://towardsdatascience.com/understand-transposed-convolutions-and-build-your-own-transposed-convolution-layer-from-scratch-4f5d97b2967

Caution: Checkerboard Artifacts

* Transpose convolution causes artifacts in output images

Great visual (and more!) from this article: https:/distill.oub/2016/deconv-checkerboard/

61


https://distill.pub/2016/deconv-checkerboard/

Caution: Checkerboard Artifacts

* Transpose convolution causes artifacts in output image
* Why? Some pixels get written to more often than others
* Is there a better way to upsample?

R N N N N N N N N NN
N N N N N NN NN
A RN . . . . . . . .
o —— —— — S, S — — S — G —.
o T TR | S S | — — T G—"; O — S —. Y
\\\ R — \\\ R — R R G— U S—
N— T — G — 29 T ——

Great visual (and more!) from this article: https:/distill.pub/2016/deconv-checkerboard/ o2



https://distill.pub/2016/deconv-checkerboard/

Eliminating checkerboard artifacts

Step 1: Upsample using nearest neighbor interpolation:

©
3

Pixels in upsampled
image are assigned pixel
value of CLOSEST pixelin

original image
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Eliminating checkerboard artifacts

Step 2: Perform a convolution with SAME padding on the upsamp

image

200 200

20 N
Upsample ~Jy [ Relu
(Nearest Neighbor o= P;'ol -4
Interpolation) Output
Input > 200 Image
|mage 20 200
3




Dealing With it in Tensorflow

# Layer to upsample the image by a factor of 5 in x and y using nearest
# neighbor interpolation

tf.keras.layers.UpSampling2D (size=(5, 5), interpolation='nearest’)

# Do a convolutional layer on the result

tf.keras.layers.Conv2D(filters = 1, kernel size = (10,10), padding = “SAME")

65



Checkerboard Artifacts Resolved

Great visual (and more!) from this article: https:/distill.oub/2016/deconv-checkerboard/

With Transpose Convolution

66


https://distill.pub/2016/deconv-checkerboard/

