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Autoencoders and Variational Autoencoders 

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Make sure to submit mid-semester feedback!



Review: Supervised v/s Unsupervised Learning

https://www.cs.ubc.ca/~lsigal/532L/Lecture11.pdf



Review: Unsupervised Learning

https://www.cs.ubc.ca/~lsigal/532L/Lecture11.pdf



Review: Unsupervised Learning

https://www.cs.ubc.ca/~lsigal/532L/Lecture11.pdf



Review: Autoencoder
• Reconstruction loss: 𝐿 𝒙, $𝒙 = 𝒙	 − $𝒙 !	
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Today’s goal – learn about variational 
autoencoders (VAEs)

(1) Convolutional AEs

(2) Generative models

(3) Variational Autoencoders (VAEs) 



Convolutional Autoencoders
• CNNs are great for image processing in Neural Networks
• How can we build a convolutional autoencoder?
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Convolutional Autoencoders: Encoding

Same as Conv Nets from before:
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Autoencoders: Decoding

• Convolution as we know it only keeps resolution same or decreases it
• How do we go up in resolution?
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Autoencoders: Transpose Convolution
• Convolution can be viewed as a matrix multiplication
• How do we represent it this way?
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Autoencoders: Transpose Convolution
Step 1: Flatten the image into a column vector
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Autoencoders: Transpose Convolution
• Step 2: Unroll the kernel/filter
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Autoencoders: Transpose Convolution
Step 3: Matrix multiply 
unrolled kernel with flattened 
image
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Autoencoders: Transpose Convolution
Each row of the convolution 
matrix corresponds to a dot 
product between filter and 
image patch:
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Autoencoders: Transpose Convolution
Each row of the convolution 
matrix corresponds to a dot 
product between filter and 
image patch:
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Autoencoders: Transpose Convolution
Each row of the convolution 
matrix corresponds to a dot 
product between filter and 
image patch:

17

2
1
0
3
0
0
1
2
3
1
2
0
0
2
2
1

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

2 1 0 3

0 0 1 2

3 1 2 0

0 2 2 1



Autoencoders: Transpose Convolution
Each row of the convolution 
matrix corresponds to a dot 
product between filter and 
image patch:
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Autoencoders: Transpose Convolution
Step 4: Finally reshape the output back into a 
grid
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Autoencoders: Transpose Convolution
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Autoencoders: Transpose Convolution

To upsample an image, we just 
do the inverse of this operation.

What matrix do we use? 

The transpose of the big 
convolution matrix
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Autoencoders: Transpose Convolution

Finally, reshape the output 
vector into a grid to get the final 
output image:
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Transpose Convolution in Tensorflow

tf.nn.conv2d_transpose(input, filters, output_shape, strides, padding=’SAME’)
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Documentation here: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d

4D tensor of shape [batch, height, 
width, in_channels]

4-D Tensor with shape                                           
[height, width, output_channels, in_channels]

length 4 1D tensor representing 
the output shape.  

Strides along 
each dimension
(list of integers)

String 
representing 

type of padding

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d


Transpose Convolution in Tensorflow

tf.nn.conv2d_transpose(input, filters, output_shape, strides, padding=’SAME’)

24

Why do we need to specify output size?



Specifying Output Size

• An image can be the result of the same 
convolution on images of different resolution

• We need to specify which one we want.
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Transpose Convolution in Keras

tf.keras.layers.Conv2DTranspose(filters, kernel_size, strides, padding=’SAME’)
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Documentation here: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2DTranspose

Note: Output Shape is inferred

Number of filters 
(Integer) Size of Convolution 

Window (tuple)
String 

representing 
type of padding

Strides along 
each dimension 
(list of integers)

Any questions?

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2DTranspose


Today’s goal – learn about variational 
autoencoders (VAEs)

(1) Convolutional AEs

(2) Generative models

(3) Variational Autoencoders (VAEs) 



Unsupervised Learning

https://www.cs.ubc.ca/~lsigal/532L/Lecture11.pdf



Unsupervised Learning

https://www.cs.ubc.ca/~lsigal/532L/Lecture11.pdf

Generative models



Discriminative v/s Generative models



Discriminative v/s Generative models



Discriminative v/s Generative models



𝑥!

𝑥"

𝜌(𝑥)

Generative Modeling Is:

1. A procedure for (approximately) sampling from 
the distribution from which a dataset was 
drawn

33

𝑥′ ∼ 𝑝(. )

Training dataset New data point

*Probability density is the 
relationship between observations 
and their probability. 



𝑥!

𝑥"

𝜌(𝑥)

Generative Modeling:

1. A procedure for (approximately) sampling from 
the distribution from which a dataset was 
drawn

2. A procedure for (approximately) evaluating the 
probability density of a datapoint under the 
distribution from which a dataset was drawn
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𝑥′ ∼ 𝑝(. )

𝜌(𝑥′)

Training dataset New data point

*Probability density is the 
relationship between observations 
and their probability. 



These two views are both useful

1. A procedure for (approximately) sampling from 
the distribution from which a dataset was 
drawn

2. A procedure for (approximately) evaluating the 
probability density of a datapoint under the 
distribution from which a dataset was drawn

35

Application: outlier detection

Training dataset
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𝜌 𝑥′ = large

𝜌 𝑥′ = tiny

Application: visual creativity



These two views are both useful

1. A procedure for (approximately) sampling from 
the distribution from which a dataset was 
drawn

2. A procedure for (approximately) evaluating the 
probability density of a datapoint under the 
distribution from which a dataset was drawn
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Application: outlier detection
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The Guardian

Application: things are getting more 
complicated!

https://www.theguardian.com/fashion/2023/apr/03/ai-virtual-models-fashion-brands


What are some example generative models?

• Any probability distribution can be a generative 
model

• You already know some of these!

• E.g. The Gaussian Distribution

• 𝑝 𝑥	 𝜇, 𝜎) = 𝒩(𝜇, 𝜎)(𝑥) = 0
123!

𝑒4
"#$ !

!%!

• Sampling:
• Sample from the unit normal distribution → 	𝑟 ∼ 𝒩 0, 1
• Return 𝜇 + 𝑟𝜎
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https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform


Disadvantages of Gaussian distribution

• Can only represent distributions with a single 
mode
• What if the distribution has multiple “peaks?”
• E.g. book prices (concentrates around different 

price points if it’s hardcover, paperback, e-book, 
...)

38



Better: Mixture of Gaussians

• A linear combination of multiple 
individual Gaussian distributions
• 𝑝 𝑥	 𝑤, 𝜇, 𝜎) = ∑5𝑤5𝒩(𝜇5, 𝜎5)(𝑥)
• Sampling:

• Sample from the discrete weight distribution 
𝑤 to choose a Gaussian

• Sample from that Gaussian as before

39



What about something like this?

• This doesn’t look like a linear 
combination of Gaussians...

• ...but maybe it can be expressed 
as a nonlinear function of 
Gaussians?

40

What can we do?



“I hear these neural nets are 
pretty good at learning non-linear 

functions” J

41



A Neural Generative Model 

• Input: a point 𝑧 ∈ ℝ. drawn from a normal distribution 𝒩(𝜇, 𝜎)
• Output: a point 𝑥 ∈ ℝ/  distributed according to some more complex 

distribution

42

Generator 
Network

Any questions?



A Neural Generative Model 

• Input: a point 𝑧 ∈ ℝ. drawn from a normal distribution	𝒩(𝜇, 𝜎)
• Output: a point 𝑥 ∈ ℝ/  distributed according to some more complex 

distribution

43

Generator 
Network

What are some 
distributions that 

look like this?



A Neural Generative Model 

• Input: a point 𝑧 ∈ ℝ. drawn from a normal distribution 𝒩(𝜇, 𝜎)
• Output: a point 𝑥 ∈ ℝ/  distributed according to some more complex 

distribution

44

Generator 
Network

The distribution of human faces



A Neural Generative Model 

• Great! So...how do we train this thing?
• Let’s modify our autoencoder to achieve this

45
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Autoencoder
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Let’s think for a bit – how to modify 
the autoencoder to make it a 

generative model?



Variational Autoencoders (VAEs)
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Variational Autoencoders (VAEs)

• This looks almost exactly like an autoencoder...
• ...except that this bottleneck vector is randomly sampled
• We’ll see how in a few slides
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Variational Autoencoders (VAEs)

• In fact, the encoder can produce multiple different random vectors...
• ...which then lead to different outputs which are variants of the input
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Variational Autoencoders (VAEs)

• Why do this?
• We’ll see shortly how this setup allows for a nice, stable learning algorithm
• (It’s actually just a small modification to how autoencoders are trained)
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Building up the VAE Architecture

If we were to describe an autoencoder functionally:

Output = Decoder(Encoder(Input))

51

Latent Representation

EncoderInput Latent 
Representation

Decoder Output

*Latent representation ~ compressed representation



Building up the VAE Architecture

For variational autoencoders, we also do a random sampling operation 
at the bottleneck

Output = Decoder(random_sample(Encoder(Input)))
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How does random sampling in latent space 
lead to variation?
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• The random sampling should be 
designed to produce random 
points in latent space that are 
close to the output of the 
encoder

• Nearby points in the latent space 
should decode to similar images



How should random_sample be defined?
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Output = Decoder(random_sample(Encoder(Input)))
• We want the sample to be close to the encoder output
• One option: sample from a Gaussian centered at Encoder(Input)

What can we modify?



How should random_sample be defined?
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EncoderInput Latent 
Representation

Decoder Output

Output = Decoder(random_sample(Encoder(Input)))
• We want the sample to be close to the encoder output
• One option: sample from a Gaussian centered at Encoder(Input)
• Use two dense layers to convert the encoder output into the mean 

and standard deviation of the Gaussian
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How should random_sample be defined?
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Training a VAE
Two goals:
1. Reproduce an output similar to the input (Input ≈ Output)
2. Have some variation in our output (Input      Output)

• Seems like two conflicting goals!
• How do we resolve these two goals?
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Weighted Combination of Losses

= loss associated with producing output similar to input
      = loss associated with producing output with some variation to 
input

Total Loss:
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Recap
Convolutional AEs

Generative modeling – formulation 
and applications

Probability distributions = generative models

Generative 
Modeling

Generative modeling for complex 
distributions

VAE architecture

Variational 
Autoencoders 

(VAEs)
Modifying AEs



Extra material

More reading on Transpose Convolution 

https://towardsdatascience.com/understand-transposed-convolutions-and-build-your-own-transposed-convolution-layer-from-scratch-4f5d97b2967


Caution: Checkerboard Artifacts
• Transpose convolution causes artifacts in output images

61Great visual (and more!) from this article: https://distill.pub/2016/deconv-checkerboard/

https://distill.pub/2016/deconv-checkerboard/


Caution: Checkerboard Artifacts
• Transpose convolution causes artifacts in output image
• Why? Some pixels get written to more often than others
• Is there a better way to upsample?

62Great visual (and more!) from this article: https://distill.pub/2016/deconv-checkerboard/

https://distill.pub/2016/deconv-checkerboard/


Eliminating checkerboard artifacts

Step 1: Upsample using nearest neighbor interpolation:
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Eliminating checkerboard artifacts

Step 2: Perform a convolution with SAME padding on the upsampled 
image 
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Dealing With it in Tensorflow

# Layer to upsample the image by a factor of 5 in x and y using nearest    
# neighbor interpolation

tf.keras.layers.UpSampling2D(size=(5, 5), interpolation=’nearest’)

# Do a convolutional layer on the result

tf.keras.layers.Conv2D(filters = 1, kernel_size = (10,10), padding = “SAME”)
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Checkerboard Artifacts Resolved

66Great visual (and more!) from this article: https://distill.pub/2016/deconv-checkerboard/

With Transpose Convolution

With Resize + Convolution

https://distill.pub/2016/deconv-checkerboard/

