CSCI 1470/2470 Spring 2024

Guest Lecture: Michal Golovanevsky

April 3rd, 2024 Wednesday

Deep Learning

DALL-E 2 prompt "a painting of deep underwater with a yellow submarine in the bottom right corner"

About Me

3rd year Computer Science PhD at Brown!

Research Interests: Deep learning, multimodal learning, clinical decision support, interpretable ML

Advisors: Ritambhara Singh and Carsten Eickhoff

Website:<u>https://michalg04.github.io/</u> Email: michalg@brown.edu

B.S. 2016-2020

PhD 2021 - Present

Today's goal – understand OpenAI's CLIP model

(1) CLIP at a high level

(2) Zero-shot Learning

(3) Contrastive Learning

(4) Walkthrough of results and CLIP's capabilities

CLIP - Contrastive Language-Image Pre-training

- CLIP is a multi-modal (language-image) model
- Uses contrastive learning
- CLIP is a zero-shot classifier
- In 2021, CLIP beat unsupervised and supervised baselines on many datasets
- Leverages a huge amount of paired data ("web-scale")
- While contrastive learning was not new at the time, it was never SOPENAI done at this multimodal scale

CLIP is capable of...

Food101 guacamole (90.1%) Ranked 1 out of 101 labels

✓ a photo of **guacamole**, a type of food.

× a photo of **ceviche**, a type of food.

 \times a photo of **edamame**, a type of food.

× a photo of **tuna tartare**, a type of for

PatchCamelyon (PCam)

× a photo of hummus, a type of food. healthy lymph node tissue (77.2%) Ranked 2 out of 2 labels

 \times this is a photo of lymph node tumor tissue

this is a photo of healthy lymph node tissue

Motivation

- Limitations of prior image classification and captioning methods...
 - Costly datasets
 - Narrow
 - Poor real-world performance

Dataset

ImageNet

ImageNet V2

ImageNet Rendition

ObjectNet

ImageNet Sketch

ImageNet Adversarial

Costly Datasets

- Vision models have traditionally been trained on manually labeled datasets that are expensive to construct
- The ImageNet dataset required over 25,000 workers to annotate 14 million images
- In contrast, CLIP learns from text—image pairs that are already publicly available on the internet

1441 = -

- 400 million pairs from the web

Google image		0 🌵 Q			
Q, Tous Taille ▼	Licence → Type → Pérjode → Licence	Shopping Plus Paramètres O s Creative Commons - Effacer	utils		
nature écran bleu ciel	background wallpaper	beach fond natural sky	y carnaval masque	plage cloud projection for	est
Same I					
				-	and the
8					
Plus de 500 000 images de Nature et pixabay.com	de Pay Plus de 10 000 images de Image et pixabay.com	de A Images Gratuites : photographe, Captu pxhere.com	rer, I Plus de 10 000 images de Image pixabay.com	e et de Image libre: baie, belle image, ténèbres, pixnio.com	Plus de 1 pixabay.c
			(1.m) -		
a all in			RILLOD		
			B		-
images Gratuites : Temple de marbre, pxhere.com	Image libre: bec, belle image, gratuit d' pixnio.com	Images Gratuites : Vie nocturne, néon, Tec pxhere.com	Image libre: amour, coeur, forme, art, i pixnio.com	Images Gratuites : panorama, Lac, le coucher du sol pxhere.com	Plus de pixabay.
DIAGRAM OF AN IMAGE INTENSIFIE	R				1

Narrow

- An ImageNet model is good at predicting the 1000 ImageNet categories, but that's all it can do "out of the box."
- If we wish to perform any other task, an ML practitioner needs to build a new dataset, add an output head, and fine-tune the model.
- In contrast, CLIP can be adapted to perform a wide variety of visual classification tasks without needing additional training examples

ImageNet

Poor Real-World Performance

- Deep learning has surpassed human abilities in a variety of benchmarks (tasks)

Andrew Ng @ AndrewYNg · Nov 15 Should radiologists be worried about their jobs? Breaking news: We can now diagnose pneumonia from chest X-rays better than radiologists. stanfordmlgroup.github.io/projects/chexn...

- Yet when deployed in the wild, their performance can be far below the expectation set by the benchmark
- In other words, there is a gap between "benchmark performance" and "real performance."

Poor Real-World Performance

- Hypothesis: models "cheat" by only optimizing for performance on the benchmark
 - much like a student who passed an exam by studying only the questions on past years' exams

- In contrast, the CLIP model can be evaluated on benchmarks without having to train on their data, so it can't "cheat" in this manner
 - CLIP is a zero-shot learner!

Zero-shot Learning

- Zero-shot learning refers to the ability of a model to correctly make predictions for tasks it has not explicitly been trained for
- It's called "zero-shot" because the model sees zero examples of the specific task during training
- Instead, it relies on a generalized understanding and representation of the data it was trained on, allowing it to make inferences about new, unseen tasks

Zero-shot Learning

- In the context of CLIP, zero-shot learning allows the model to understand and relate textual descriptions to images in ways it was not explicitly trained for
- This is possible because CLIP is trained on a vast amount of image-text pairs, learning a rich, multimodal space that generalizes well beyond its training data

PatchCamelyon (PCam) healthy lymph node tissue (77.2%) Ranked 2 out of 2 labels

Zero-shot Learning vs. Unsupervised Learning

- Unlike unsupervised learning, where models attempt to learn patterns from data without any labeled examples, zero-shot learning models are typically trained on large, labeled (ish) datasets
- The key difference is in application:
 - Unsupervised learning seeks to understand the structure of data without explicit labels
 - Zero-shot learning uses its pre-existing knowledge and understanding to make inferences about completely new and unseen tasks or data categories

Any questions on the motivation for CLIP or zero-shot learning?

CLIP - Road Map

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

Let's dive into CLIP step 1!

(1) Contrastive pre-training

Important:

- CLIP uses data-data pairs for training, not data-label pairs!
- This does not require manual annotation

So.. what is "contrastive pre-training"?

Contrastive pre-training is where a model learns to distinguish between similar and dissimilar pairs of data points during its training phase.

So.. what is "contrastive pre-training"?

It's called "contrastive" because it focuses on contrasting or comparing features within pairs to learn discriminative representations, effectively teaching the model what makes each data point unique or similar to others

How does CLIP learn which image belongs to which caption?

(1) Contrastive pre-training

InfoNCE loss:

maximizes the
 similarity between
 correct pairs and
 minimizes the
 similarity between
 incorrect pairs

- "InfoNCE" stands for Information Noise-Contrastive Estimation
- Traditionally, it is a method that estimates mutual information between variables by contrasting observed data against noise samples

- Goal: pull positive samples closer together and push negative samples farther apart

$$L_{\rm InfoNCE} = -\log\left(\frac{\exp(s_{\rm positive}/\tau)}{\exp(s_{\rm positive}/\tau) + \sum_{i=1}^{K}\exp(s_{\rm negative_i}/\tau)}\right)$$

$$L_{\text{InfoNCE}} = -\log\left(\frac{\exp(s_{\text{positive}})}{\exp(s_{\text{positive}}) + \sum_{i=1}^{K} \exp(s_{\text{negative}_i})}\right)$$

For ease of understanding, we can ignore the temperature *tau*, which is scalar that controls the smoothness of the softmax distribution

InfoNCE Loss, similarity calculation

InfoNCE Loss, similarity calculation

InfoNCE Loss, similarity calculation

Meaning of "Positive" vs "Negative" pairs

Question: Do you think the picture of a husky would be considered a positive or negative example?

Meaning of "Positive" vs "Negative" pairs, CLIP

Summation in the denominator comes from...

Meaning of "Positive" vs "Negative" pairs, CLIP

Goal: pull positive samples closer together and push negative samples farther apart

Is step (1) really that simple?

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

Figure 3. Numpy-like pseudocode for the core of an implementation of CLIP.

How do we use the learned information? Steps (2) and (3)

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

CLIP - Steps (2) and (3)

- Classes come from a target dataset (e.g. ImageNet)
- Text prompts are created
- The learned Text Encoder (from Step 1) embeds the prompts

CLIP - Steps (2) and (3)

- Test images are embedded by the Image Encoder (step 1)
- Cosine similarity is calculated between all the prompts and the current image
- The image-caption pair with the highest similarity becomes the "predicted label"

Food101

guacamole (90.1%) Ranked 1 out of 101 labels

✓ a photo of guacamole, a type of food.	
× a photo of ceviche , a type of food.	
× a photo of edamame , a type of food.	
× a photo of tuna tartare , a type of food.	
× a photo of hummus , a type of food.	

Example of how prompts are used

CLIP - Steps (2) and (3)

TLDR: Using contrastively trained image and text encoders that understand which image-text pairs "belong" together in the wild, enables the model to make a prediction over which new unseen image-text pairs belong together

CLIP - Overview of Training and Model Details

- Existing datasets are... "small"
 - Visual Genome and MSCOCO ~ 100,000
 - "High quality" images from YFCC100M ~ 15M
- CLIP is trained on 400M image-text dataset from a "variety of publicly available sources"
- Very little data augmentation needed only used a random square crop
- Temperature parameter (scalar) is learned not tuned

CLIP - Overview of Training and Model Details

Text encoder \rightarrow Transformer

_

- a 63M-parameter 12- layer 512-wide model with 8 attention heads

- Image encoder \rightarrow Modified ResNet or Vision Transformer
 - The largest ResNet model, RN50x64, took 18 days to train on 592 V100 GPUs while the largest Vision Transformer took 12 days on 256 V100 GPUs

- ResNet (pre-trained on ImageNet) and linearly probed for each dataset
 - i.e. ResNet frozen + fine-tuning linear layer
- Zero-shot CLIP beats ResNet on 16/27
 - Including ImageNet!!!
- New SoTA for STL10! (99.3%)
- General trend is that 'specialized' datasets perform worse with CLIP

Figure 5. Zero-shot CLIP is competitive with a fully supervised baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 datasets, including ImageNet.

- Why doesn't CLIP do well on simple datasets like MNIST?

Figure 5. Zero-shot CLIP is competitive with a fully supervised baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 datasets, including ImageNet.

Why doesn't CLIP do well on simple datasets like MNIST?

1(1)

2 (2)

7(7)

VS

Google

image

0 🤳 0

Why doesn't CLIP do well on simple datasets like MNIST?

1(1)

/

0(0)

2(2)

1(1)

💼 eBay · In stock

NGTV

Contemporary Hou...

82C

a Amazon.com · In stock

Apartment Door Numbe...

📕 Angie's List

50 Decorative House Number Ideas

Custom House Number - ...

🥮 www.modernhousenumb..

Your Default Home Pag...

C Craft Cuts House Address Numbers - Custo...

D MyDomaine

33 Best House Nu...

🕕 Better Homes & Ga **Creative House Nu**

CLIP is a robust vision model

Limitations of CLIP

- Zero-shot CLIP is competitive with ResNet. But ResNet is far from SOTA
 - Authors estimate a 1000x increase in compute is required for zero-shot CLIP to match SOTA
- Poor generalization to (true) out of domain tasks (e.g. MNIST)
 - CLIP does little to address brittle generalization of DL models rather attempts to circumvent generalization by training on a huge amount of data
- CLIP is **expensive**
 - while it does not require manual data collection and annotation, running a Transformer and a ResNet/ViT on 400 million image-text pairs is a significant effort
- "Web-scale" also means biased

The end!

We learned:

- Contrastive learning can be an effective way to learn image-text representations
- Zero-shot models like CLIP show promise in diverse tasks, limiting the need for more manually annotated datasets
- These models are expensive to train, but the underlying idea can be applied to other modalities and domains!
- Read more about CLIP <u>here</u> :)

Non Zero-shot Performance compared to other models

