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Variational Autoencoders contd. 

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”



Review: Discriminative v/s Generative models



Review: Weighted Combination of Losses

= loss associated with producing output similar to input
      = loss associated with producing output with some variation to 
input

Total Loss:
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Today’s goal – continue to learn about 
variational autoencoders (VAEs)

(1) VAE Loss - KL Divergence

(2) Reparameterization trick

(3) Conditional VAE



VAE Losses, Defined

We have seen       before: this is just the autoencoder reconstruction 
loss
 

But with      , it's not so clear. How do we measure how much variation 
our output would have? 
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Defining the 𝐿! Loss...

• To get variation, we definitely need a loss that encourages 𝜎 > 0
• If we don’t do this, 𝐿! will drive 𝜎 to zero in an effort to produce the best 

reconstructions
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Defining the 𝐿! Loss...

• To get variation, we definitely need a loss that encourages 𝜎 > 0
• If we don’t do this, 𝐿! will drive 𝜎 to zero in an effort to produce the best 

reconstructions
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What’s the issue here?



Defining the 𝐿! Loss...

• To get variation, we definitely need a loss that encourages 𝜎 > 0
• If we don’t do this, 𝐿! will drive 𝜎 to zero in an effort to produce the best 

reconstructions
• Behaves the same as a regular autoencoder!
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Defining the 𝐿! Loss...

• To get variation, we definitely need a loss that encourages 𝜎 > 0
• If we don’t do this, 𝐿! will drive 𝜎 to zero in an effort to produce the best 

reconstructions

• But how big should we encourage 𝜎 to be?
• And for that matter, what we do about 𝜇?
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Defining the 𝐿! Loss...

• The idea: make 𝒩(𝜇, 𝜎) close to 𝒩(0, 1)
• Obviously, we can’t perfectly satisfy this for every input (otherwise every 

input would produce the same set of outputs à terrible reconstruction!)
• But, we’ll see later that having some light pressure to make 𝒩(𝜇, 𝜎) close to 
𝒩(0, 1) will have some beneficial properties
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Defining the 𝐿! Loss...

• Wait...but how do we make 𝒩(𝜇, 𝜎) close to 𝒩(0, 1)?
• More generally: how do measure the difference between two 

probability distributions? 
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Kullback–Leibler (KL) Divergence
Measures the difference between any two probability distributions

What this says:
• “Everywhere that 𝑝 has probability density...”
• “...the difference between 𝑝 and 𝑞 should be small”
• Difference in log probabilities (remember that log "

# = log 𝑎 − log(𝑏))

13More on KL Divergence: https://jessicastringham.net/2018/12/27/KL-Divergence/

https://jessicastringham.net/2018/12/27/KL-Divergence/


Kullback–Leibler (KL) Divergence
Measures the difference between any two probability distributions

• Note that this is not symmetric: 𝐷!"(𝑃| 𝑄 ≠ 𝐷!"(𝑄| 𝑃
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Kullback–Leibler (KL) Divergence
• Expensive to compute, in general (no closed form, have to 

numerically approximate the integral)
• But! There is a closed form for Gaussians:

      
      is the dimensionality of 𝝁 and 𝝈 (e.g.      = 100 when                   )  

We won’t derive the equation above, but let’s convince ourselves it 
behaves how we expect it to behave 15



Kullback–Leibler (KL) Divergence
• Expensive to compute, in general (no closed form, have to 

numerically approximate the integral)
• But! There is a closed form for Gaussians:
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Derive the expression for (1) 𝝈=1 and (2) μ=0 



KL Divergence for Two Gaussians

Let’s take the case 𝛔 = 1

The expression is minimized 𝝁 = 0 (which is what we want!)
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KL Divergence for Two Gaussians

Let’s take the case 𝝁 = 0

This expression is minimized when 𝛔 = 1 (which is also what we want!)
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The Final VAE Loss Function

We now have all the tools necessary to construct our loss function.

Which turns into this:
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Putting it all together
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Ah, but there’s a catch:

• To update the weights of the encoder, we have to backprop through a 
random sampling operation

• Sampling a random value seems not differentiable...
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Remember our sampling strategy for 
Gaussian?

•  The Gaussian Distribution

• 𝑝 𝑥	 𝜇, 𝜎) = 𝒩(𝜇, 𝜎)(𝑥) = !
%&'(

𝑒(
)*+ (

(,(

• Sampling:
• Sample from the unit normal distribution → 	𝑟 ∼ 𝒩 0, 1
• Return 𝜇 + 𝑟𝜎
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https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform


The Reparameterization Trick

A nice property of Gaussian distributions: if we sample 
we can rewrite it as:

Where 

• The random sampling no longer depends on learnable parameters
• This allows us to do backpropagation
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Random Sampler with Reparameterization Trick
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Random Sampler with Reparameterization Trick
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Random Sampler with Reparameterization Trick
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One more practical detail
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Let’s again consider our sampling operation

• Nothing prevents the neural network from outputting negative 
values for the standard deviation. 

• Instead of predicting 𝝈, we will instead predict                . This ensures 
that every 
• i.e. just treat the output of the Dense layer as if it is 
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One more practical detail
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Let’s again consider our sampling operation

• Instead of predicting 𝝈, we will instead predict                . This ensures 
that every 
• i.e. just treat the output of the Dense layer as if it is 
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Sampling from a VAE

• We can use a trained VAE to generate random variants of an input 
data point...
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Sampling from a VAE

... But ultimately, we want to draw random samples from a VAE

How can we do this?
This is where our particular choice of training loss will pay off
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Encoding different points into latent space
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𝒩(0,1)
Let this circle represent the 
probability density of a unit 
Gaussian in latent space



Encoding different points into latent space
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probability density of 
the 𝒩(𝜇, 𝜎) 
distribution that the 
encoder predicts given 
an input data point 𝑥!
 



Encoding different points into latent space
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𝒩 𝜇 𝑥! , 𝜎 𝑥!

Because of our KL 
divergence loss, the 
𝒩(𝜇, 𝜎) for any input 
data point has to be 
somewhat similar to 
𝒩(0,1) 

So, if we sample a point 
from 𝒩(0,1), it is very 
likely to fall within one 
of these encoded 
distributions from the 
training set...

...which the decoder has 
been trained to 
reconstruct well!
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Sampling from a VAE
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• Discard this part of the network... 

So what do we do?



Sampling from a VAE
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• Discard this part of the network... 
• ...and set 𝜇, 𝜎 = (0, 1)



Latent Space Interpolation
• Trace a linear path between two points in latent space, put all points 

along the path into the decoder
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Latent Space Interpolation
• Trace a linear path between two points in latent space, put all points 

along the path into the decoder
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Latent Space Interpolation
• Trace a linear path between two points in latent space, put all points 

along the path into the decoder

38

𝒩(0,1)
Decoder(Encoder(𝑥!))

𝑥! 𝑥"

Decoder(Encoder(𝑥"))

Encoder(𝑥!)

Encoder(𝑥")



Latent Space Interpolation
• Trace a linear path between two points in latent space, put all points 

along the path into the decoder
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Latent Space Interpolation
• Can also try it with a regular autoencoder
• Doesn’t work as well
• Why not?
• The KL divergence loss regularizes the shape of the latent space. Without it, a 

regular autoencoder might have “empty” pockets of latent space
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Linear interpolation has to 
cross a pocket of empty space 
(where the behavior of the 
decoder is not well defined)

https://www.jeremyjordan.me/variational-autoencoders/

Any questions?

https://www.jeremyjordan.me/variational-autoencoders/




EncoderInput Latent 
Representation

Decoder Output

Dense

Dense

𝜇

𝜎

𝒩(𝜇, 𝜎)

Conditional VAE
Any ideas?
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Conditional VAE

https://towardsdatascience.com/understanding-conditional-variational-autoencoders-cd62b4f57bf8



VAE output

44
https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a

What’s the issue here?

Why?



Why are VAE samples blurry?

• Our reconstruction loss is the culprit

• Mean Square Error (MSE) loss looks at each pixel in 
isolation

• If no pixel is too far from its target value, the loss won’t be 
too bad

• Individual pixels look OK, but larger-scale features in the 
image aren’t recognizable

• Solutions?
• Let’s choose a different reconstruction loss!
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https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a



Recap
Loss Function

Variational 
Autoencoders 

(VAEs)

Reparameterization Trick

Conditional VAEs
https://towardsdatascience.com/wh
at-the-heck-are-vae-gans-
17b86023588a



Extra Material: Deriving the VAE loss

Full derivation here - https://arxiv.org/pdf/1907.08956.pdf

https://arxiv.org/pdf/1907.08956.pdf


Variational autoencoder (a generative model)

*Marginalization is a method that requires summing over the possible values of one 
variable to determine the marginal contribution of another

compute with decoder network

we assume Gaussian prior



Variational autoencoder (a generative model)

Recall Bayes Rule:

compute with decoder network we assume Gaussian prior

Train an encoder that learns



Variational autoencoder (a generative model)

Take log on each sides



Variational autoencoder (a generative model)
We want to maximize the likelihood of the 
distribution p(x) 
So, we reframe the likelihood function by 
wrapping in expectation w.r.t. z

*Expected value = summation or integration of all possible values of a random variable

Variational Lower Bound



Variational autoencoder (a generative model)

See Deep Learning Book
 (Section 5.5)

Maximum Likelihood Estimation:

Loss:

https://www.deeplearningbook.org/contents/ml.html

