“Robustly-Reliable Learners for Unreliable Data”

Avrim Blum
S i S DA e
" TIT At -

AN ol
R

G
b
-

ovota | '} A [+ ‘
= H e U e e ey e Y e k> e 1) L S J
NI AL S s e e P Y RN A oy e OB s e, i o A

PARIS C. KANELLAKIS

M E M O

CSCl 1470/2470
Spring 2024

Ritambhé_ra Singh

April 05, 202

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Review: Discriminative v/s Generative models

P(m)

Generative Model:
Learn a probability
distribution p(x)

» Generative model: All possible images compete with each other
for probability mass

 Model can “reject” unreasonable inputs by assigning them small

values
Credit: UMich EECS498

Review: Weighted Combination of Losses

L1 = |oss associated with producing output similar to input
L2 = |oss associated with producing output with some variation to

input
L =114+ ALo
Total Loss: T
A € 0, oo

T

O@o"e U
Input Encoder Latent N(w o) | Decoder | | oytput
Representation
O@
e

/ 0 \

/

\

Today’s goal — continue to learn about
variational autoencoders (VAESs)

(1) VAE Loss - KL Divergence
(2) Reparameterization trick

(3) Conditional VAE

VAE Losses, Defined

We have seen L; before: this is just the autoencoder reconstruction
loss

A

Li(x,2)=|lz — 2

2

But with L., it's not so clear. How do we measure how much variation
our output would have?

L“)(")") ‘|)‘,)) —

Defining the L, Loss...

* To get variation, we definitely need a loss that encourages a > 0

* If we don’t do this, L, will drive ¢ to zero in an effort to produce the best
reconstructions

\ /

Latent
Representation

Decoder Output

T

Input Encoder

/

N(wo)

\

Defining the L, Loss...

* To get variation, we definitely need a loss that encourages a > 0

* If we don’t do this, L, will drive ¢ to zero in an effort to produce the best
reconstructions

I What's the issue here?

\ /&e' K \ /
Q
Input Encoder Latent | Decoder | | otput

Representation N 0)

= T

Defining the L, Loss...

* To get variation, we definitely need a loss that encourages a > 0

* If we don’t do this, L, will drive ¢ to zero in an effort to produce the best
reconstructions

* Behaves the same as a regular autoencoder!

y&f" : \
Input Encoder Latent Decoder | | oytpyt

Representation

= T

Defining the L, Loss...

* To get variation, we definitely need a loss that encourages a > 0

* If we don’t do this, L, will drive ¢ to zero in an effort to produce the best
reconstructions

* But how big should we encourage ¢ to be?
* And for that matter, what we do about u?

\ /

(2]
0@0‘7 U
Input Encoder Latent N(w o) | Decoder | | oytput
Representation
O@
e

= T

/

\

Defining the L, Loss...

* The idea: make N (u, o) close to N (0,1)

* Obviously, we can’t perfectly satisfy this for every input (otherwise every
input would produce the same set of outputs = terrible reconstruction!)

* But, we'll see later that having some light pressure to make NV (u, o) close to
N (0, 1) will have some beneficial properties

\ /

O@o"e U
Input Encoder Latent N(w o) | Decoder | | oytput
Representation 5

= T

/

\

Defining the L, Loss...

* Wait...but how do we make N (u, o) closeto N'(0,1)?

* More generally: how do measure the difference between two
probability distributions?

\ Q“)e ; /
N \
Input Encoder Latent N(w o) | Decoder | | oytput
Representation
O@

= T

\

Kullback—Leibler (KL) Divergence

Measures the difference between any two probability distributions

Diu(PIlQ) = [los (M) Ir

NS q(x)

What this says:
* “Everywhere that p has probability density...”

* Difference in log probabilities (remember that log (%) = log(a) — log(b))

More on KL Divergence: https://jessicastringham.net/2018/12/27/KL-Divergence/

13

https://jessicastringham.net/2018/12/27/KL-Divergence/

Kullback—Leibler (KL) Divergence

Measures the difference between any two probability distributions
00
p(z)
Dir(PIQ) = [pla)log (—) Ir

—00 q()

* Note that this is not symmetric: Dy, (P||Q) # Dk (Q]|P)

minimize KL(Q || P): Norm(2.00, 0.22) minimize KL(P || Q): Norm(-0.48, 3.19)

Kullback—Leibler (KL) Divergence

* Expensive to compute, in general (no closed form, have to
numerically approximate the integral)

e But! There is a closed form for Gaussians:

-
o
c
—
=
=
—
=
-
[—
N
]

Z(,uf +07 —Ino’ —1)

k
1=1

1
2
k is the dimensionality of g and o (e.g. k =100 when p € R'”°)

We won’t derive the equation above, but let’s convince ourselves it
behaves how we expect it to behave

Kullback—Leibler (KL) Divergence

* Expensive to compute, in general (no closed form, have to
numerically approximate the integral)

e But! There is a closed form for Gaussians:

k

Dict (N (1,) [IN(0,1)) = 5 31 + 0 ~ Ino? — 1)

Derive the expression for (1) =1 and (2) y=0

16

KL Divergence for Two Gaussians

k

Dyt (N (1,) [IN(0,1)) = 5 (1 + 0 ~ Ino? — 1)

=1

Let’s take the case o =1 k

Dyt (N (. DIW(0,1)) = 5 372 +12 ~ In(1) — 1)

The expression is minimized u = 0 (which is what we want!)

17

KL Divergence for Two Gaussians

k

DI\L<N(M70—2)HN<O 1)) — § Z(sz + U-iz — In O-iz o 1)
i=1
Let’s take the case u =0
k
; 1 ; ;
Di(N(0,0%)[IN(0, 1)) = 5 > (07 —In(o}) — 1)
1=1

This expression is minimized when o = 1 (which is also what we want!)

18

The Final VAE Loss Function

We now have all the tools necessary to construct our loss function.

L =L+ ALy A€ 0, <]

Which turns into this:

L = ||z —&||5 + ADgr(N (1, o), N(0,1))

Putting it all together

Any questions?

27?792

-'
€2

L= ||z — 2|5+ ADgr(N(u,0),N(0,1))

Input

T

Encoder

/

Laten
Represen

tation

/

N, o

<
oé\%
oe/)

\

Output

Ah, but there’s a catch: | Can anyone guess? |

* To update the weights of the encoder, we have to backprop through a
random sampling operation

e Sampling a random value seems not differentiable...

Yl U

Q L
Input Encoder Latent N o) | Decoder | | oytpyt
Representation A
G/)@@

= T

Remember our sampling strategy for
Gaussian?

e The Gaussian Distribution

* plx o) =N(po)(x) =
e Sampling:

e Sample from the unit normal distribution —» r ~ N'(0, 1) '3

2
1 _%
e 20

2102

* Returnu +ro

22

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

The Reparameterization Trick

A nice property of Gaussian distributions: if we sample z ~ N (u, o)
we can rewrite it as:

Z=U+€-0O

Where
e ~N(0,1)

* The random sampling no longer depends on learnable parameters
* This allows us to do backpropagation

Random Sampler with Reparameterization Trick

8
\’
¢

Random Sampler with Reparameterization Trick

y’ 0z
Random Sampler — =1
/ o
N ——
7' ~
~_ /

Random Sampler with Reparameterization Trick

y 0z

Random Sampler — =€
/ 80'

—Z

e

B €

One more practical detail = |= |= | e K

Let’s again consider our sampling operation

z ~N(p,o0)
/ \
i € [_06700] 0; € [0700]

* Nothing prevents the neural network from outputting negative

values for the standard deviation.

* Instead of predicting o, we will instead predict log(a?) . This ensures

that every o; € [0, o]
+ i.e. just treat the output of the Dense layer as if it is log(c?)

N (w0

uuuuuu

One more practical detail .|| . < el
% B/'

Let’s again consider our sampling operation
Any questions?

ZN/N(.M’ U,)\ 7?7
e ‘2@ .
i € [—00, 00 0; € [0, 00) |

* Instead of predicting o, we will instead predict log(c”) . This ensures
that every o; € [0, 00
- i.e. just treat the output of the Dense layer as if it is log(c?)

k

Dyt (N (1,) [IN(0,1)) = 5 31 + 07 ~Ino? — 1)

=1

28

Sampling from a VAE

* We can use a trained VAE to generate random variants of an input
data point...

Input

Random Vector

Sampling from a VAE

... But ultimately, we want to draw random samples from a VAE

0.2
0.5 VAE
-3 >
/ -2 Random
Random Noise 0.8 Sample

How can we do this?
This is where our particular choice of training loss will pay off

Encoding different points into latent space

Let this circle represent the
probability density of a unit
Gaussian in latent space

31

Encoding different points into latent space

Let this circle
represent the
probability density of
the V' (u, 0)
distribution that the
encoder predicts given
an input data point x;

32

Encoding different points into latent space

L = HQZ’ — 53”% -+ /\DKL(N(/L, O'),N(O, 1)) Because of our KL

divergence loss, the

N (u,0) for any input
data point has to be

somewhat similar to

N(0,1)

N(,u(x4), o(xs)) NV(0,1)

9) So, if we sample a point

From NV (0,1), it is very
likely to fall within one
of these encoded
distributions from the
N (u(xe), 0 training set...

N(,u(xﬂ, 0(x7))

...which the decoder has
N (u(xs), (X3 been trained to
reconstruct well! .,

Sampling from a VAE

« Discard this part of the network...

So what do we do?

N(w0)

/

Decoder

T

Output

34

Sampling from a VAE

« Discard this part of the network...
« ..andset (u,0) =(0,1)

N(0,1)

/

Decoder

T

Output

Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

36

Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

Encoder(x,)

37

Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

De?i(Encoder(xl)) Decoder(Encoder(x,))
X n X2
o il P

Encoder(x,)

38

Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

Deco er(Encoder(xl)) Decoder(Encoder(x,))

YW

Encoder(x,)

39

Any questions?

Latent Space Interpolation

* Can also try it with a regular autoencoder

* Doesn’t work as well

 Why not?
* The KL divergence loss regularizes the shape of the latent space. Without it, a
regular autoencoder might have “empty” pockets of latent space

Only reconstruction loss Only KL divergence Combination

Linear interpolation has to L NG ‘ % ' e
cross a pocket of empty space bt ‘ : X ‘ ; ‘

(where the behavior of the : % .

decoder is not well defined) B :

https://www.jeremyjordan.me/variational-autoencoders/

https://www.jeremyjordan.me/variational-autoencoders/

Discriminative vs Generative Models

P(g |cat)
j P([4 [cat) P(#8|cat)
[[|
P(IEE |dog)
P(l Idog) J oo

Conditional Generative Conditional Generative Model: Each possible label

induces a competition among all images

Model: Learn p(x]|y)

Credit: UMich EECS498

Conditional VAE

Input

T

Encoder

/

Latent
Representation

/

N(w0)

\

/

Decoder

Any ideas?

T

Output

Conditional VAE

Input

T

Encoder

SEE

Encoder

/

Latent
Representation

https://towardsdatascience.com/understanding-conditional-variational-autoencoders-cd62b4f57bf8

/

N(w0)

\

\

Decoder

A

Output

VAE output

https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a

What's the issue here?

Why?

44

Why are VAE samples blurry?

e Our reconstruction loss is the culprit

* Mean Square Error (MSE) loss looks at each pixel in
isolation

* If no pixel is too far from its target value, the loss won’t be
too bad

* Individual pixels look OK, but larger-scale features in the
image aren’t recognizable

e Solutions?
* Let’s choose a different reconstruction loss!

https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a

45

Recap

| Loss Function I
Variational | Reparameterization Trick |
Autoencoders
(VAEs)
| Conditional VAEs I

Input Encoder

Representation N(u,0)

E/

e
Latent Decoder Output
@o*"@

Extra Material: Deriving the VAE loss

Full derivation here - https://arxiv.org/pdf/1907.08956.pdf

https://arxiv.org/pdf/1907.08956.pdf

Variational autoencoder (a generative model)

Unfortunately, z is unknown, so we need to
marginalize over all possible z:

How to train this model?

Basic idea: maximize likelihood of data

pe(x) = fpe(x,Z)dZ =TP9(?C|Z)P9(Z]

Problem: Impossible to integrate over all z!

Reconstructed
L e Ideally they are identical. ~ ---------------------- - inout
i el P
X~X
Probabilistic Encoder
70(z(x)
Mean M Sampled
— latent vector
Probilistic
x |—> (I _“1.,,;.. »| Decoder [5] 5/
po(x|2)
“ (o
Std. dev
_ An compressed low dimensional
z=p+o0Oe representation of the input.
e ~N(0,I)

compute with decoder network

we assume Gaussian prior

*Marginalization is a method that requires summing over the possible values of one
variable to determine the marginal contribution of another

Credit: UMich EECS498

Variational autoencoder (a generative model)

compute with decoder network

we assume Gaussian prior

po(x | z)pg(2)

po(x) =

Pe(z | x)

Train an encoder that learns

Ay (z | x) = pe(z | x)

L e Ideally they are identical.

Probabilistic Encoder
q4(z|x)

Mean m

X~ x

Sampled
Iatent vector
Probilistic
Decoder

o
Std. dev

Z=p+o0OEe
e ~N(0,I)

po(x|2)

An compressed low dimensional

representation of the input.

_ Po (x | z)pg(2)

CI¢(Z | x)

Reconstructed

Idea: Jointly train both
encoder and decoder to
maximize pg(x)!

Recall Bayes Rule:

P(AIB) |= P(A) X

posterior

P(BlA) likelihood
P(B) marginal

Credit: UMich EECS498

Variational autoencoder (a generative model)

po(x | z)pg(2)
pe(z | x)

po(x) =

po(x | z)p(2)

logpg(x) = log

pe(z | x)

102N (1)

po(Z|x,

= logpy (x]2) | log

qp(Z|%)

qe(z]x)

p(z)

+ log

Bayes’ Rule

Take log on each sides

Multiply top and bottom by q4(z|x)

qe(2]|x)

ozl SPlit up using rules for logarithms

Credit: UMich EECS498

Variational autoencoder (a generative model)

We want to maximize the likelihood of the

qu (le) CI¢ (le) distribution p(x) o |
= lo xlz) — lo + lo So, we reframe the likelihood function by
lOg p9 (X) & Pe(|) 5 p(Z) 5 Po (Z|X) wrapping in expectation w.r.t. z
lo (X) z~ z [10g Po (X)]
q¢ (z]x) [q¢(z]x) &P6 4¢(21)
= E, [l —E, |l E, |lo
/ z10gPe (x]2)] = E; ’ 07 p(2) M pg (z|x) doesn’t depend on z
— Ez~q¢(z|x) [log pg(x|z)] — Dx1 (q¢(zlx),p(z)) + Dk, (qe(2]x), po (2z]x)) DxiL(P || Q) = IEE;P log(gg)

KL is >= 0, so dropping this

Data reconstruction k| divergence between prior, and .
term gives a lower bound!

by the decoder samples from the encoder network

log pe(x) = E;~q(z1x)[108 e (X|2)] — Dk (qcb (z|x),p(z)) Variational Lower Bound

*Expected value = summation or integration of all possible values of a random variable

Variational autoencoder (a generative model)

Maximum Likelihood Estimation:
log Pe (X) = Ez~q¢(z|x) [log Pe (X|Z)] o DKL (q§b (le); p(Z))

Loss:

Ez~q¢(z|x) [log pe(x|2)] + Dg; (ng (z]x), P(Z))

L = ||QZ — :?:||% +)\DKL(N(,Ua 0)7N(07 1))

See Deep Learning Book
(Section 5.5)

https://www.deeplearningbook.org/contents/ml.html

