

Recap

How to represent inputs and outputs

Represent input and output as numbers

Classification predicting categorical outputs

Regression - predicting numerical outputs

> Learn a function that approximates the data well

Supervised Learning

Try different models

Pick a good model
Get more data!

Try different
models

Real world data tends to be complicated!

Input: X
$\mathrm{f}+\mathrm{"Temperature"}$ "Stand Hours" "Sunny?"

Target: \mathbb{Y}
"Profit made on selling lemonade"

$$
x_{1}^{(1)}=100.1 \quad x_{2}^{(1)}=8 \quad x_{3}^{(1)}=1 \quad y^{(1)}=200.0
$$

Today's goal - Learn about the first component of deep learning model

Perceptron:

(1) Machine Learning problem - Recognizing handwritten digits
(2) Perceptron
(3) Parameters - weights and biases

Handwritten digit recognition

Motivation: ZIP codes

- In 1990s, great increase in documents on paper (mail, checks, books, etc.)
- Motivation for a ZIP code recognizer on real U.S. mail for the postal service!

$$
\begin{aligned}
& 80322-412980006 \\
& 40004 \quad 4310 \\
& \text { つา8าe offs } \\
& 350275216 \\
& \text { 55460: } 44209
\end{aligned}
$$

Our Problem:

Input: X
Target: \mathbb{Y}

Which digit is it?

$$
\begin{aligned}
& \text { Function: } \mathrm{f} \\
& \mathrm{f}(\mathbb{X}) \rightarrow \mathbb{Y}
\end{aligned}
$$

$$
3=
$$

Representing digits in the computer

- Numbers known as pixel values (a grid of discrete values that make up an image)

0 is white, 255 is black, and numbers in between are shades of gray

$$
3
$$

- Pixel in position [15, 15] is light.

what the computer sees

Often has lighter pixels in the middle!
How does the pattern compare with digit 3?

$$
3
$$

Let's define some rules (heuristic) for classifying "7"

Digit is a 7 if $P_{1}>$ 128 and $P_{2}>128$ and $P_{3}>128$

But what if...

An Improved Heuristic!

Digit is a 7 if $P_{1}>$ 128 and $P_{2}>128$ and ($P_{3}>128$ ог $P_{4}>128$)

Not so fast...

Heuristics...

- Not as simple as we think!
- Distortions, overlappings, underlinings, etc.
- Cannot rely on a set of exact rules

Distorted numbers

$4 \underset{4->9}{4} \underset{2-8}{2}$

Machine Learning Pipeline for Digit Recognition

Machine Learning Pipeline for Digit Recognition

MOIST

- Modified National Institute of Standards and Technology database
- Handwritten digits
- 0 - 9 (10 classes)
- 70,000 images

0000000000000000
$11111111 / 1111111$
222222222222222
$\begin{array}{llllllllllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}$
4444444444444444
$555555 \$ 5555555555$
666666666666666
7777777777777777
$\begin{array}{lllllllllllllllll}8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\ 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$

Machine Learning Pipeline for Digit Recognition

Machine Learning Pipeline for Digit Recognition

Train, validation, and test sets

- Train set - used to adjust the parameters of the model
- Validation set - used to test how well we're doing as we develop
- Prevents overfitting
- Test set - used to evaluate the model once the model is done

MOIST
－Training set－60，000 images
－Test set－10，000 images
－No explicit validation set
What do you suggest we do here？

0000000000000000
1111111111111111
2222222222222222
$333333313 \begin{array}{llllllll}3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}$
4444444444444444
5555555555555555
6666666666666666
77クフ7フ77クク7フ7777
$\begin{array}{llllllllllllllllll}8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\ 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$

Machine Learning Pipeline for Digit Recognition

Machine Learning Pipeline for Digit Recognition

Dataset

Evaluate
Model

Test set

Our Problem:

Input: \mathbb{X}

28×28 pixels
$x^{(2)}=$

What is our input space?
What is our output space?
Classifying MNIST digits requires predicting 1 of 10 possible values

Target: \mathbb{Y}

Which digit is it?

$$
y^{(1)}=" 2 "
$$

$$
\mathrm{f}(\mathbb{X}) \rightarrow \mathbb{Y}
$$

$$
y^{(2)}=" 0 "
$$

Our simplified problem:

```
What is our input space?
```

Input: X

Pixel Grid
What is our output space?
Target: \mathbb{Y} Is it digit 2?

28×28 pixels

> What is our prediction task?
\Rightarrow Function: f
$y^{(1)}=1$

$$
f(X) \rightarrow Y
$$

$x^{(2)}=$

$$
y^{(2)}=0
$$

Perceptron
(Our first deep learning model unit)

Biological motivation

- Loosely inspired by neurons, basic working unit of the brain
- Serve to transmit information between cells

The Perceptron

Biological Neuron
Artificial Neuron (Perceptron)

Input

- Input: a vector of numbers $\mathrm{x}=\left[x_{1}, x_{2}, \ldots x_{n}\right]$

```
What was }\mp@subsup{\textrm{x}}{\textrm{i}}{}\mathrm{ for
lemonade stand
example?
```

```
What is }\mp@subsup{x}{i}{}\mathrm{ MINIST image?
```

x is represented by a 28 * 28 matrix of pixel values, flattened into a one-dimensional vector (size 784) (more on this later)

Predicting with a Perceptron

1. Multiply each input x_{i} by its corresponding weight w_{i}, sum them up.
2. Add the bias b

Predicting with a Perceptron

1. Multiply each input x_{i} by its corresponding weight w_{i}, sum them up.
2. Add the bias b
3. If the result value is greater than 0 , return 1, otherwise return 0
$f_{\Phi}(x)=\left\{\begin{array}{rr}1, & \text { if } b+\sum_{i=0}^{n} w_{i} x_{i}>0 \\ 0, & \text { otherwise }\end{array}\right.$

How is perceptron different from linear
regression?

Threshold value $=0$

Performs binary classification!

Parameters

- w and b are parameters of the perceptron
- Parameters: values we adjust during learning
- Let $\Phi=\{w \bigcup b\}$ (the set of all parameters)

Parameters

- Weights - the importance of each input to determining the output
- Weight near 0 imply this input has little influence on the output
- Negative weight means?

Option 1: Increasing input will increase output

Option 2: Increasing input will decrease output

Option 3: Decreasing input will decrease output

Parameters

- Weights - the importance of each input to determining the output
- Weight near 0 imply this input has little influence on the output
- Negative weight means increasing the input will decrease the output

Parameters

- Bias - What do we need this for?

$$
f_{\Phi}(x)=\left\{\begin{array}{rr}
1, & \text { if } b+\sum_{i=0}^{n} w_{i} x_{i}>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Bias: Geometric Explanation

- the bias is essentially the \mathbf{b} term in $\mathbf{y}=\mathbf{m x} \mathbf{b}$

Bias: Conceptual Explanation

- Bias - the a priori likelihood of the positive class
- Ensures that even if all inputs are 0 , there will be some result value
- Just because all inputs are 0 , it does not mean there are no 1 's in the world
- Maybe there just happen to be more, say, 0's than 1's

$$
f_{\Phi}(x)=\left\{\begin{array}{rr}
1, & \text { if } b+\sum_{i=0}^{n} w_{i} x_{i}>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Bias as special type of weight

- Another way to think of bias is to represent it as an extra weight for an input/feature that is always 1

Bias as special type of weight

- Another way to think of bias is to represent it as an extra weight for an input/feature that is always 1

$$
\begin{aligned}
& {\left[x_{0}, x_{1}, x_{2}, \ldots x_{n}\right] \cdot\left[w_{0}, w_{1}, w_{2}, \ldots w_{n}\right]+b } \\
= & {\left[x_{0}, x_{1}, x_{2}, \ldots x_{n}, 1\right] \cdot\left[w_{0}, w_{1}, w_{2}, \ldots w_{n}, b\right] }
\end{aligned}
$$

Recall

$$
\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right] \text { and } \mathbf{b}=\left[b_{1}, b_{2}, \ldots, b_{n}\right] \text { with vector space } n,
$$

the dot product is

$$
\mathbf{a} \cdot \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
$$

Simplifying some notation...

- Recall: the dot product of two vectors of length n is $\mathbf{a} \cdot \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i}$
- We can rewrite the perceptron function accordingly:

Any questions?

$f_{\Phi}(x)=\left\{\begin{array}{l}1, \\ 0,\end{array}\right.$
if $b+\sum_{i=0}^{n} w_{i} x_{i}>0$
$f_{\Phi}(x)=\left\{\begin{array}{rr}1, & \text { if } b+\mathrm{w} \cdot \mathrm{x}>0 \\ 0, & \text { otherwise }\end{array}\right.$

- In modern deep learning parlance, $b+\mathbf{w} \cdot \mathbf{x}$ is known as a linear unit

A Binary Perceptron for MNIST

- Inputs $\left[x_{1}, x_{2}, \ldots x_{n}\right]$ are all positive
- $n=784$ (28*28 pixel values)
- output is either 0 or 1
- $0 \rightarrow$ input is not the digit type we're looking for
- $1 \rightarrow$ input is the digit type we're looking for

Training a perceptron (Next Class)

The Perceptron Learning Algorithm (Next class)

1. set w 's to 0 .

2. for N iterations, or until the weights do not change:
a) for each training example x^{k} with label y^{k}
i. if $y^{k}-f\left(\mathrm{x}^{k}\right)=0$ continue
ii. else for all weights $w_{i}, \Delta w_{i}=\left(y^{k}-f\left(\mathbf{x}^{k}\right)\right) x_{i}^{k}$

- $b=$ bias
- $w=$ weights
- $N=$ maximum number of training iterations
- $\mathrm{x}^{k}=\mathrm{k}^{\text {th }}$ training example
- $y^{k}=$ label for the $\mathrm{k}^{\text {th }}$ example
- $w_{i}=$ weight for the $\mathrm{i}^{\text {th }}$ input where $i \leq n$
- $n=$ number of pixels per image
- $x_{i}^{k}=\mathrm{i}^{\text {th }}$ input of the example where $i \leq n$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |

