Counseling and Psychological Services (CAPS) at Brown Presents:

timelycare

timelycare.com/brown

- Flexible, remote counseling with licensed mental health providers in the United States
- Free access to up to 12 teletherapy sessions per year
 - Students needing 12+ sessions will work with CAPS to explore treatment options
- Unlimited access to a library of wellness videos including nutrition, stress management, sleep hygiene, mindfulness, and yoga

Scan to Access Mental Health Care & Well-Being Content

CAPS still offers Crisis Care, individual & group therapy on campus by calling: 401-863-3476

Intro to Reinforcement Learning

CSCI 1470/2470 Spring 2024

Ritambhara Singh

April 15, 2024 Monday

ChatGPT prompt "minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner"

Deep Learning

Different Learning Paradigms

Supervised Learning

We've focused on this thus far...

Different Learning Paradigms

We've focused on this thus far...

Different Learning Paradigms

Now it's time to look at this

Why Reinforcement Learning?

Why Reinforcement Learning?

- Requires less data (e.g. no need for explicit training labels)
- Humans learn from experience, not just labels (e.g. touching hot tea hurts!)

Today's goal – learn about Reinforcement Learning (RL)

(1) Sequential Decision making

(2) Formalizing RL – Markov Decision Processes

(3) Policies – defining agent behavior

RL: Sequential Decision Making

Sequential decision making describes a situation where the decision maker (DM) makes successive observations of a process before a final decision is made.

What's a common example of a sequential decision making process?

- Playing games!
- Let's look at a specific example...

This Photo by Unknown Author is licensed under CC BY-SA-NC

Flappy Bird

https://flappybird.io/

What is the goal here?

What are the possible actions?

- Goal: maximize "score" number of green pipes the bird passes without hitting one
- Actions: flap or don't flap

Supervised Learning for Flappy Bird

How can you learn to play using supervised learning?

- Input
 - Training data: image frame
 - Labels: best action to take in that frame
- Goal: learn which action to take for a given frame

Label:

Flap

How does RL learn Flappy Bird?

- Requires no pre-collected data!
- Learn from experience by playing game over and over and over again
- Agent wants to choose actions that will give it higher scores

General RL framework

Recent RL Successes

- AlphaGo (DeepMind, 2016)

 Defeated best Go player in the world
 2-hour documentary: https://www.alphagomovie.com/
- AlphaZero (DeepMind, 2017)
 - Defeated best chess, shogi, and Go computers in the world by learning only from self-play
- Dota 2 (OpenAl Five, 2019)
 - First AI to beat world champions in esports game
- AlphaStar (DeepMind, 2019)
 - First AI to beat professional StarCraft players
- Autonomous Helicopter Flight (2017)
- Atari games (2015)

Lee Sedol (W) vs AlphaGo (B) - Game 4 [commons.Wikimedia.org]

[Kansky 2017, "Scheme Networks"

[https://link.springer.com/referenceworkentry/10.1007%2F978-1-4899-7687-1 16]

RL Reservations

- Inefficient with data
 - AlphaGo learned from playing ~100 million games
 - Human Go champion only has played ~50,000 games total
- Sensitive to small perturbations in the environment
 - E.g. Agent successfully trained on Atari Breakout will completely fail if the paddle is shifted a few pixels upward.

[https://www.vicarious.com/2017/08/07/general-game-playing-with-schema-networks/]

Formalizing RL: Markov Decision Processes

• States – set of possible situations in a world, denoted S

*Sometimes researchers like to make the distinction -

A **state** s is a complete description of the state of the world. There is no information about the world which is hidden from the state. An **observation** o is a partial description of a state, which may omit information.

- States set of possible situations in a world, denoted S
- Actions set of different actions an agent can take, denoted A

- States set of possible situations in a world, denoted S
- Actions set of different actions an agent can take, denoted A
- Transition function returns the probability of transitioning to state s' after taking action a in state s, denoted T(s, a, s')

- States set of possible situations in a world, denoted S
- Actions set of different actions an agent can take, denoted A
- Transition function returns the probability of transitioning to state s' after taking action a in state s, denoted T(s, a, s')
- Reward function returns the reward received by the agent for transitioning to state s' after taking action a in state s, denoted R(s, a, s')

State

- Representation of the "situation" at a point in time
 - Flappy Bird full image frame containing bird's location, pipe locations, etc.

You – how you're feeling on a scale of 1-10? – say you feel tired.

[This Photo by Unknown Author is licensed under CC BY-SA-NC]

Actions

Set of different actions an agent can do

Flappy Bird – {flap, don't flap}

You – {take a nap, go out partying}

• Given a current state *s*, an action *a*, and another state *s'*, returns the probability of transitioning into *s'* after taking action *a* in state *s*

- Given a current state *s*, an action *a*, and another state *s'*, returns the probability of transitioning into *s'* after taking action *a* in state *s*
- In other words: how does choosing an action in one state transition you to the next state?

- Given a current state *s*, an action *a*, and another state *s'*, returns the probability of transitioning into *s'* after taking action *a* in state *s*
- In other words: how does choosing an action in one state transition you to the next state?
- $T: S \times A \times S \rightarrow \mathbb{R}$

- Given a current state *s*, an action *a*, and another state *s'*, returns the probability of transitioning into *s'* after taking action *a* in state *s*
- In other words: how does choosing an action in one state transition you to the next state?
- $T: S \times A \times S \rightarrow \mathbb{R}$
- $T(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$

Transition Function Examples

- You
 - Current state: feeling tired
 - Action: go out partying
 - What's probability your next state is too tired to attend your friend's birthday brunch?

 Flappy Bird is deterministic, so probability is 1

Reward Function

- Given *s*, *a*, *s*', return the reward from taking *a* in *s* and transitioning to *s*'
- Flappy Bird
 - Réward is 1 when passing tubes, 0 otherwise

- You
 - Current state: feeling tired
 - Action: go out partying
 - Next state: too tired to attend your friend's birthday brunch

Reward:

• "Decision" – agent "decides" on which action to take

- "Decision" agent "decides" on which action to take
- "Process" stuff happens over time (e.g. states change)

- "Decision" agent "decides" on which action to take
- "Process" stuff happens over time (e.g. states change)
- "Markov" "history doesn't matter"; next state depends only on current state and action, not a history of the previous states

- "Decision" agent "decides" on which action to take
- "Process" stuff happens over time (e.g. states change)
- "Markov" "history doesn't matter"; next state depends only on current state and action, not a history of the previous states
- Formally: $P(s_{t+1} | s_t) = P(s_{t+1} | s_t, s_{t-1}, ..., s_1)$

What is the goal here?

Goal : To maximize the cumulative reward (sum over future rewards)

$$G_t = R_{t+1} + R_{t+2} + \dots$$

$$G_t = \sum_{k=0}^T R_{t+k+1}$$

In reality, we can't just add the rewards like that...

38

Agent: mouse

Goal: eat the maximum amount of cheese before being eaten by the cat.

It is more probable to eat the cheese near us than the cheese close to the cat (the closer we are to the cat, the more dangerous it is).

As a consequence, the reward near the cat, even if it is bigger (more cheese), will be discounted.

We're not really sure we'll be able to eat it.

Can we modify our original goal?

39

• Goal: maximize sum of discounted future rewards, G_t, aka "return"

- Goal: maximize sum of discounted future rewards, G_t, aka "return"
- $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

- Goal: maximize sum of discounted future rewards, G_t, aka "return"
- $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
- γ is "discount factor" value rewards sooner rather than later (prefer \$100 now over \$100 in ten years)

- Goal: maximize sum of discounted future rewards, G_t, aka "return"
- $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
- γ is "discount factor" value rewards sooner rather than later (prefer \$100 now over \$100 in ten years)
- Rewards exponentially decay the later in time they are received from the present!

Sum of Infinite Geometric series

$$\gamma \in [0,1)$$

- Goal: maximize sum of discounted future rewards, G_t, aka "return"
- $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
- γ is "discount factor" value rewards sooner rather than later (prefer \$100 now over \$100 in ten years)
- Rewards exponentially decay the later in time they are received from the present!
 - E.g. if reward = 1 at every time step and discount factor is 0.9, then

Let's calculate G_t

- Goal: maximize sum of discounted future rewards, G_t, aka "return"
- $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
- γ is "discount factor" value rewards sooner rather than later (prefer \$100 now over \$100 in ten years)
- Rewards exponentially decay the later in time they are received from the present!
 - E.g. if reward = 1 at every time step and discount factor is 0.9, then

$$G_t = 1 + 0.9 + 0.9^2 + \dots = \sum_{k=0}^{k} 0.9^k = 10$$

Today's goal – learn about Reinforcement Learning (RL)

(1) Sequential Decision making

(2) Formalizing RL – Markov Decision Processes

(3) Policies – defining agent behavior

Policies: defining agent behavior

• What action should the agent take in a given state?

- What action should the agent take in a given state?
- Concretely:

- What action should the agent take in a given state?
- Concretely:
- $\pi: S \to A$

- What action should the agent take in a given state?
- Concretely:
- $\pi: S \to A$
- Input: state $s \in S$

- What action should the agent take in a given state?
- Concretely:
- $\pi: S \to A$
- Input: state $s \in S$
- Output: action to be chosen in that state

- What action should the agent take in a given state?
- Concretely:
- $\pi: S \to A$
- Input: state $s \in S$
- Output: action to be chosen in that state
- $\pi(s) = a$ means in state *s*, take action *a*

Policy Function Examples

- Flappy Bird:
 - Good policy might be "flap" in any state in which the bird is just below the upcoming opening (will lead to passing through opening)
 - Bad policies might be "never flap" (will lead to falling into ground and losing)
 - Infinite number of policies!

- You:
 - Policy #1: Never go out partying (bad!)
 - Independent of inputted state
 - Policy #2: Go out partying only if you are not tired

- Learn optimal policy π^* that maximizes the expected future cumulative reward

- Learn optimal policy π^* that maximizes the expected future cumulative reward
 - "Expected" because transitions can be non-deterministic

- Learn optimal policy π^* that maximizes the expected future cumulative reward
 - "Expected" because transitions can be non-deterministic
- Solving MDPs ← → find this optimal policy!

- Agent starts in top left corner
- Goal: Reach the bottom right without dying (skulls)
- Game terminates when agent dies or reaches goal

Can you think of some examples for :

- States:
- Actions:
- Reward:
- Transition functions:
- Policy:

- States: each square (1, 1), (1, 2), ..., (4, 4)
- Actions: left, right, up, down
- Reward: +1 when you reach the goal, 0 elsewhere
- Transition function: deterministic (for now) Probability =1 for moving a direction given the chosen action, e.g. if agent is in (1, 3):
 - If action is down: move to to (2, 3)
 - If action is left: move to (1, 2)
 - If action is right: move to (1,4)
 - If action is up: stay in (1,3)
- Policy: At (1, 3) move down, at (2,3) move down ...

Taxonomy of RL problems/algorithms

Organizing RL problems/algorithms

For a more complete taxonomy of RL algorithms, see <u>https://spinningup.openai.com/e</u> <u>n/latest/spinningup/rl_intro2.ht</u> <u>ml#citations-below</u>

RL in complex and continuous spaces

