CSCI 1470/2470

Ritambhara Singh

Spring 2024

April 17, 2024 Wednesday

Recap: RL framework

Recap: Markov Decision Process (MDP)

- States - set of possible situations in a world, denoted S
- Actions - set of different actions an agent can take, denoted A
- Transition function - returns the probability of transitioning to state s^{\prime} after taking action a in state s, denoted $T\left(s, a, s^{\prime}\right)$
- Reward function - returns the reward received by the agent for transitioning to state s^{\prime} after taking action a in state s, denoted $R\left(s, a, s^{\prime}\right)$

Recap: Policy Function

- What action should the agent take in a given state?
- Concretely:
- $\pi: S \rightarrow A$
- Input: state $s \in S$
- Output: action to be chosen in that state
- $\pi(s)=a$ means in state s, take action a

Recap: Goal of RL

- Learn optimal policy π^{*} that maximizes the expected future cumulative reward
- "Expected" because transitions can be non-deterministic
- Solving MDPs \leftrightarrows find this optimal policy!

Organizing RL problems/algorithms

For a more complete taxonomy of RL algorithms, see https://spinningup.openai.com/e n/latest/spinningup/rl_intro2.ht ml\#citations-below

Value Iteration

Value Function

What would motivate us to move from a state s to s^{\prime} ?

We assign a "value" to each state

Value Function

: Function that returns the "value" of each state

Value Function

: Function that returns the "value" of each state

- Value of state s under policy π is the expected return when starting in s and following π

Value Function

: Function that returns the "value" of each state

- Value of state s under policy π is the expected return when starting in s and following π
- "Value of my current state is the total discounted future reward I expect from following a policy π from now on"

Value Function

: Function that returns the "value" of each state

- Value of state s under policy π is the expected return when starting in s and following π
- "Value of my current state is the total discounted future reward I expect from following a policy π from now on"
- $V_{\pi}: S \rightarrow \mathbb{R}$

Value Function

: Function that returns the "value" of each state

- Value of state s under policy π is the expected return when starting in s and following π
- "Value of my current state is the total discounted future reward I expect from following a policy π from now on"
- $V_{\pi}: S \rightarrow \mathbb{R}$
- $V_{\pi}(s)=E\left[G_{t} \mid S_{t}=s\right]$ for all $s \in S$, where G_{t} is the return

Value Function

: Function that returns the "value" of each state

- Value of state s under policy π is the expected return when starting in s and following π
- "Value of my current state is the total discounted future reward I expect from following a policy π from now on"
- $V_{\pi}: S \rightarrow \mathbb{R}$
- $V_{\pi}(s)=E\left[G_{t} \mid S_{t}=s\right]$ for all $s \in S$, where G_{t} is the return
- $\quad=E\left[R\left(s, a, s^{\prime}\right)+\gamma V_{\pi}\left(s^{\prime}\right) \mid S_{t}=s\right]$

Value Function

: Function that returns the "value" of each state

- Value of state s under policy π is the expected return when starting in s and following π
- "Value of my current state is the total discounted future reward I expect from following a policy π from now on"
- $V_{\pi}: S \rightarrow \mathbb{R}$
- $V_{\pi}(s)=E\left[G_{t} \mid S_{t}=s\right]$ for all $s \in S$, where G_{t} is the return
- $\quad=E\left[R\left(s, a, s^{\prime}\right)+\gamma V_{\pi}\left(s^{\prime}\right) \mid S_{t}=s\right]$
- $V_{\pi}(s)=\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{\pi}\left(s^{\prime}\right)\right]$

Expectation across transition probabilities- deals with the potential stochasticity of transitioning to s'

NOTE: recursively defined!
Literally "reward agent receives now + value of the next state"

Example (made-up) Value Table

State	Value
State \#1	0
State \#2	1
State \#3	-1
State \#4	1.9
State \#5	10
State \#6	-10

Which is the favorable state?

"If we transition from state \#5 using the (our made-up) policy to other states s' the expected total discounted future reward is 10 "

Q-function

What if we have multiple actions to

take from s to s'?
We assign "value" to each action at a given state

Q-function

- $q_{\pi}: S \times A \rightarrow \mathbb{R}$

Q-function

- $q_{\pi}: S \times A \rightarrow \mathbb{R}$
- $q_{\pi}(s, a)=E\left[G_{t} \mid S_{t}=s, A_{t}=a\right]$ for all $s \in S, a \in A$

Q-function

- $q_{\pi}: S \times A \rightarrow \mathbb{R}$
- $q_{\pi}(s, a)=E\left[G_{t} \mid S_{t}=s, A_{t}=a\right]$ for all $s \in S, a \in A$
- AKA "action-value function"

Q-function

- $q_{\pi}: S \times A \rightarrow \mathbb{R}$
- $q_{\pi}(s, a)=E\left[G_{t} \mid S_{t}=s, A_{t}=a\right]$ for all $s \in S, a \in A$
- AKA "action-value function"
- Outputs expected return from taking action a in state s and following policy π thereafter

Q-value Table (made up)

	Action \#1	Action \#2
State \#1	0	-1
State \#2	0.1	1
State \#3	-1	-10
State \#4	0	1.9
State \#5	10	0
State \#6	-10	-10

How to determine policy from Q-function?

How to determine policy from Q-function?

Q-value $=9000$

Choose the action that maximizes your Q-value!

$$
\pi(s)=\operatorname{argmax}_{a} Q(s, a)
$$

Q-value Table (made up)

	Action \#1	Action \#2
State \#1	0	-1
State \#2	0.1	1
State \#3	-1	-10
State \#4	0	1.9
State \#5	10	0
State \#6	-10	-10

What actions to pick for each state for the optimal policy?

Q-function can be expressed in terms of the V-function

Q-function can be expressed in terms of the V-function

- $Q^{\pi}(s, a)=E\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]$

Q-function can be expressed in terms of the V-function

- $Q^{\pi}(s, a)=E\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]$
- $Q^{\pi}(s, a)=\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]$

Q-value and V-value Tables (made up)

	Action \#1	Action \#2
State \#1	0	-1
State \#2	0.1	1
State \#3	-1	-10
State \#4	0	1.9
State \#5	10	0
State \#6	-10	-10

State	Value
State \#1	0
State \#2	1
State \#3	-1
State \#4	1.9
State \#5	10
State \#6	-10

Any questions?

Optimal policy and value functions

Optimal policy and value functions

- Goal of RL: find optimal policy, π^{*}

Optimal policy and value functions

- Goal of RL: find optimal policy, π^{*}
- Approach: learn optimal value functions, V^{*} and Q^{*}, then define optimal policy from value functions

How do we actually learn V^{*} and Q^{*} ?

Value iteration pseudocode

Value iteration pseudocode

1. For all $s, \operatorname{set} V(s):=0$.

Value iteration pseudocode

1. For all s, set $V(s):=0$.
2. Repeat until convergence:

Value iteration pseudocode

1. For all s, set $V(s):=0$.
2. Repeat until convergence:
3. Forall s :

Value iteration pseudocode

1. For all s, set $V(s):=0$.
2. Repeat until convergence:
3. For all s :
4. For all a, set $Q(s, a):=\sum_{s^{\prime} \in s} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]$

Value iteration pseudocode

1. For all s, set $V(s):=0$.
2. Repeat until convergence:
3. Forall s :
4. For all a, set $Q(s, a):=\sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]$
5. $V(s):=\max _{a} Q(s, a)$

Value iteration pseudocode

1. For all s, set $V(s):=0$.
2. Repeat until convergence:
3. For all s :
4. For all a, set $Q(s, a):=\sum_{s^{\prime} \in S^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]$
5. $V(s):=\max _{a} Q(s, a)$
6. Return Q
```
How do we get the
    optimal policy?
```


Concrete Example: Frozen Lake Problem

- Agent starts in top left corner
- Goal: Reach the bottom right without falling into any of the holes (skulls)
- Game terminates when agent falls into hole or reaches goal

Optimal policy is easy, right?

- Multiple optimal policies, actually
- Solve using shortest path algorithm

Not quite - frozen lakes are slippery!

- Agent may not actually move in the direction of the action!
- Yellow arrow indicates the action
- Red arrows indicate where the agent may end up, each with probability $1 / 3$

Can't "fall off" frozen lake

- Transitioning beyond an edge will keep you in same state

Frozen Lake Problem as an MDP

- States: each square - (1, 1), (1, 2), ... , (4, 4)
- Actions: left, right, up, down
- Reward: +1 when you reach the goal, 0 elsewhere
- Transition function: stochastic (because ice is slippery!)
Equal probability of moving in any direction except chosen action, e.g. if agent is in (1, $3)$ and action is down:
- $1 / 3$ chance of moving to $(1,2)$
- $1 / 3$ chance of moving to $(2,3)$
- $1 / 3$ chance of moving to $(1,4)$

Frozen Lake - initialization

VALUE TABLE

	1			2
3	4			
	0	0	0	0
	0	0	0	0
	0			
	0	0	0	0
	0	0	0	0

Frozen Lake - iteration 1:

 update square $(1,3)$

Old Value Table

New Value Table

$\mathrm{V}((1,3))$ is still 0 , because the adjacent values of $(1,3)$ are all 0 and no rewards are gained for any possible action taken in $(1,3)$.

Frozen Lake - iteration 1: update square $(4,3)$

Old Value Table

New Value Table

How did we get 0.33 ?

Update $(4,3)$ explanation

Update $(4,3)$ explanation

Update equation:

$$
V(s)=\max _{a} Q(s, a) \text {, where } Q(s, a)=\sum_{s^{\prime} \in s} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]
$$

Update $(4,3)$ explanation

Update equation:

$$
V(s)=\max _{a} Q(s, a), \text { where } Q(s, a)=\sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]
$$

Finding Q values for all actions:

Update $(4,3)$ explanation

Update equation:

$$
V(s)=\max _{a} Q(s, a), \text { where } Q(s, a)=\sum_{s^{\prime} \in s} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]
$$

Finding Q values for all actions:

- $Q((4,3)$, right $)=1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((3,3)))+1 / 3(0+\gamma V((4,3)))=0.33$

Update $(4,3)$ explanation

Update equation:

$$
V(s)=\max _{a} Q(s, a), \text { where } Q(s, a)=\sum_{s^{\prime} \in s} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]
$$

Finding Q values for all actions:

- $Q((4,3)$, right $)=1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((3,3)))+1 / 3(0+\gamma V((4,3)))=0.33$
- $Q((4,3), u p)=1 / 3(0+\gamma V((3,3)))+1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((4,2)))=0.33$

Update $(4,3)$ explanation

Update equation:

$$
V(s)=\max _{a} Q(s, a), \text { where } Q(s, a)=\sum_{s^{\prime} \in s} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]
$$

Finding Q values for all actions:

- $Q((4,3)$, right $)=1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((3,3)))+1 / 3(0+\gamma V((4,3)))=0.33$
- $Q((4,3), u p)=1 / 3(0+\gamma V((3,3)))+1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((4,2)))=0.33$
- $Q((4,3)$, down $)=1 / 3(0+\gamma V((4,3)))+1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((4,2)))=0.33$

Update $(4,3)$ explanation

Update equation:

$$
V(s)=\max _{a} Q(s, a), \text { where } Q(s, a)=\sum_{s^{\prime} \in s} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]
$$

Finding Q values for all actions:

- $Q((4,3)$, right $)=1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((3,3)))+1 / 3(0+\gamma V((4,3)))=0.33$
- $Q((4,3), u p)=1 / 3(0+\gamma V((3,3)))+1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((4,2)))=0.33$
- $Q((4,3)$, down $)=1 / 3(0+\gamma V((4,3)))+1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((4,2)))=0.33$
- $Q((4,3)$, left $)=1 / 3(0+\gamma V((4,2)))+1 / 3(0+\gamma V((4,3)))+1 / 3(0+\gamma V((3,3)))=0$

Update $(4,3)$ explanation

Update equation:

$$
V(s)=\max _{a} Q(s, a), \text { where } Q(s, a)=\sum_{s^{\prime} \in s} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]
$$

Finding Q values for all actions:

- $Q((4,3)$, right $)=1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((3,3)))+1 / 3(0+\gamma V((4,3)))=0.33$
- $Q((4,3), u p)=1 / 3(0+\gamma V((3,3)))+1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((4,2)))=0.33$
- $Q((4,3)$, down $)=1 / 3(0+\gamma V((4,3)))+1 / 3(1+\gamma V((4,4)))+1 / 3(0+\gamma V((4,2)))=0.33$
- $Q((4,3)$, left $)=1 / 3(0+\gamma V((4,2)))+1 / 3(0+\gamma V((4,3)))+1 / 3(0+\gamma V((3,3)))=0$

Then,

$$
V((4,3))=\max _{a} Q((4,3), a)=0.33
$$

Frozen Lake - iteration 2

Old Value Table

	1	2	3	4
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0.33	0

New Value Table

- During this iteration, the value from $(4,3)$ "backs up" to its adjacent states, $(3,3)$ and $(4,2)$.
- Value of $(4,3)$ increases because its adjacent states $(3,3)$ and $(4,2)$ have positive values.

Frozen Lake - final value table \& optimal policy

Frozen Lake - demo

https://colab.research.google.com/drive/1RFFdzJ8VshmpvnbCbLNggw xfwMEBw222?usp=sharing

Frozen Lake - optimal policy in action

Final Policy

(Left)
 SFFF
 FHFH
 FFFH
 HFFG

Play more with value iteration!

- https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

Recap

This Photo by Unknown Author is licensed under CC BY-SA-NC

