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Review: Q-value and V-value Tables (made up)

Action #1 Action #2

State #1 0 -1

State #2 0.1 1

State #3 -1 -10

State #4 0 1.9

State #5 10 0

State #6 -10 -10
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State Value

State #1 0

State #2 1

State #3 -1

State #4 1.9

State #5 10

State #6 -10



Review: Value iteration pseudocode
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Review: Frozen Lake – final value table & 
optimal policy
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Environment Example Final Value Table
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0.068 0.061 0.074 0.055

0.092 0 0.112 0

0.145 0.247 0.3 0

0 0.38 0.639 0
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Final Policy

1 2 3 4
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Simple/discrete

Complex/continuous

Value iteration
 

Q-Learning
 

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy 
of RL algorithms, see 
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.ht
ml#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html


Tabular Q-learning
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Motivation: Why Not Value Iteration?
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In value iteration, we assume that we know the transition and reward 
functions, but what if this isn’t the case?

How can we learn in this scenario? 



Examples of Unknown T and/or R:
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https://pixabay.com/illustrations/self-driving-car-autonomous-4309836/

Self-Driving Cars 

Can’t design T for a self-driving car.
Too complex to model directly

S F F F
F H F H
F F F H
H F F G

Frozen Lake

What if we don’t know how slippery the lake is?
(i.e. T is unknown)

T,R = ?

https://pixabay.com/illustrations/self-driving-car-autonomous-4309836/


First Attempt
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Take random 
actions to 
estimate T and R 

S F F F
F H F H
F F F H
H F F G

Run value iteration using 
estimates of T and R

𝑄 𝑠, 𝑎 =&
!"
𝑇 𝑠, 𝑎, 𝑠" 𝑅 𝑠, 𝑎, 𝑠" + 𝛾𝑉(𝑠")

𝑉 𝑠 = argmax#(𝑄 𝑠, 𝑎 )

Start in Frozen Lake with no knowledge of T or R



OpenAI Gym (https://gym.openai.com/)
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https://gym.openai.com/


Farama Foundation 
(https://gymnasium.farama.org)

https://gymnasium.farama.org/


Frozen Lake in OpenAI Gym
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Frozen Lake ‘Wandering’ Demo

https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBg
tB9yY#scrollTo=sI_x2TsCp15L
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https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY
https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY


Problems with This Approach

We’re extremely unlikely to reach the goal state through random 
wandering, so our estimates of T and R will probably be bad
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Values are the 
number of times each 
state was visited over 
10000 episodes run in 
OpenAI Gym 

So, what is the 
issue here? 



How to Improve? 
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Explore 

Improve Policy

We can interleave policy improvement with wandering
(Get better at exploring by exploring) 

But how do we improve our policy? 



Q-Learning 

• Every time we take an action, 
use the observed reward to 
update our estimate of Q

• 𝑉(𝑠) is still max
!
𝑄 𝑠, 𝑎 , so it 

only matters how we update Q
• Importantly, we use our 

estimates of Q at each step to 
pick what we think is the best 
action, instead of just moving 
randomly 
• action = argmax!𝑄(𝑠, 𝑎) 16
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Use Q to pick action 𝑎!. 
Observe transition and 
get reward 𝑟!. Use 𝑟! to 
update	𝑄(𝑠!, 𝑎!) 
immediately
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Q-Learning 

• Every time we take an action, 
use the observed reward to 
update our estimate of Q

• 𝑉(𝑠) is still max
!
𝑄 𝑠, 𝑎 , so it 

only matters how we update Q
• Importantly, we use our 

estimates of Q at each step to 
pick what we think is the best 
action, instead of just moving 
randomly 
• action = argmax!𝑄(𝑠, 𝑎) 20

S F F F

F H F H

F F F H

H F F G

Use Q to pick action 𝑎!. 
Observe transition and 
get reward 𝑟!. Use 𝑟! to 
update	𝑄(𝑠!, 𝑎!) 
immediately

Repeat process for 𝑠". 
Update 𝑄(𝑠", 𝑎") with 
𝑟"



How do we Update Q? 

Basic Strategy:
Take a weighted average of our old Q estimate with our new Q 
estimate
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𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄"#$ 𝑠, 𝑎 + 𝛼𝑄%&' 𝑠, 𝑎

Where the hyperparameter 𝛼 controls how quickly we learn

But what should 𝑄+,-(𝑠, 𝑎) be?



Determining 𝑄!"#(𝑠, 𝑎) 
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𝑄 𝑠, 𝑎 =/
#$
𝑇 𝑠, 𝑎, 𝑠$ (𝑅 𝑠, 𝑎, 𝑠$ + 𝛾𝑉 𝑠$ )

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎, 𝑠$ + 𝛾𝑉 𝑠$

In value iteration, we took an expectation over all possible next states 
and actions to get a new estimate for 𝑄 𝑠, 𝑎

In Q-Learning, we only take one action and see one new state, and use 
that one transition to update our estimate for 𝑄 𝑠, 𝑎 , so our update 
rule becomes 

i.e. the reward we observed for moving into state 𝑠!, plus whatever 
our current value function estimate thinks is the value of being in 
state 𝑠!

How do we change 
this?



The Q-Learning Update Rule

23

Combining our new estimate for 𝑄(𝑠, 𝑎) with the weighted 
average equation, the final update rule for Q-Learning 
becomes 

𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄"#$ 𝑠, 𝑎 + 𝛼𝑄%&' 𝑠, 𝑎

𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼(𝑅 𝑠, 𝑎, 𝑠5 + 𝛾𝑉 𝑠5 )

Any questions?



Q-Learning in Frozen Lake

• 𝛼 = .5, 𝛾 = .99
• Values in the grid are Q(s,a)
• Blank quadrants have a Q-value of 0

1

• Initially, the agent is acting randomly, because all states have 
a value of zero

• It would likely fall into the holes many times before 
reaching the goal state for the first time
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• Initially, the agent is acting randomly, because all states have 
a value of zero

• It would likely fall into the holes many times before 
reaching the goal state for the first time, but for this 
example assume it got lucky

• At every transition in this path(each <s,a,r,s’> tuple), the 
agent sees a reward of zero up until the final one, so none of 
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Q-Learning in Frozen Lake

• Initially, the agent is acting randomly, because all states have 
a value of zero

• It would likely fall into the holes many times before 
reaching the goal state for the first time, but for this 
example assume it got lucky

• At every transition in this path(each <s,a,r,s’> tuple), the 
agent sees a reward of zero up until the final one, so none of 
the Q-estimates change except the state before the goal

• 𝑄 𝑠, 𝑎 = 1 − 𝛼 0 + 𝛼 0 = 0
• The last transition has a positive reward though, so the 

previous state action pair is changed
• 𝑄 𝑠, 𝑎 = 1 − 𝛼 0 + 𝛼 1 = 	 .5 

1.5

• 𝛼 = .5, 𝛾 = .99
• Values in the grid are Q(s,a)
• Blank quadrants have a Q-value of 0



Q-Learning in Frozen Lake

• In another episode, the agent will still act randomly(since 
most values are still zero), unless it reaches the state next to 
the goal, which now has a positive value.

• Assume it got lucky once again
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Q-Learning in Frozen Lake

• In another episode, the agent will still act randomly(since 
most values are still zero), unless it reaches the state next to 
the goal, which now has a positive value.

• Assume it got lucky once again
• When that happens, the previous state-action pair will be 

updated using the value of the state next to the goal
• 𝑄 𝑠, 𝑎 = 1 − 𝛼 0 + 𝛼(0 + 𝛾 ∗ .5) = .5*.5*.99

1.5
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Q-Learning in Frozen Lake

• In another episode, the agent will still act randomly(since 
most values are still zero), unless it reaches the state next to 
the goal, which now has a positive value.

• Assume it got lucky once again
• When that happens, the previous state-action pair will be 

updated using the value of the state next to the goal
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goal, the agent will choose argmax%𝑄 𝑠, 𝑎 , picking the 
action corresponding to the value of .5 (since all the other 
action-values for that state are zero).

• The value of the previous state is then updated again
• 𝑄 𝑠, 𝑎 = 1 − 𝛼 . 5 + 𝛼(1) = .751.75

• 𝛼 = .5, 𝛾 = .99
• Values in the grid are Q(s,a)
• Blank quadrants have a Q-value of 0

.5*.5*.99



Q-Learning in Frozen Lake

• In another episode, the agent will still act randomly(since 
most values are still zero), unless it reaches the state next to 
the goal, which now has a positive value.

• Assume it got lucky once again
• When that happens, the previous state-action pair will be 

updated using the value of the state next to the goal
• 𝑄 𝑠, 𝑎 = 1 − 𝛼 0 + 𝛼(0 + 𝛾 ∗ .5) = .5*.5*.99

• When choosing its next action from the state next to the 
goal, the agent will choose	argmax%𝑄 𝑠, 𝑎 , picking the 
action corresponding to the value of .5 (since all the other 
action-values for that state are zero).

• The value of the previous state is then updated again
• 𝑄 𝑠, 𝑎 = 1 − 𝛼 . 5 + 𝛼(1) = .75

• This process repeats over and over again until the Q-values 
converge to 𝑄∗(𝑠, 𝑎), the optimal Q-values.

1.75

• 𝛼 = .5, 𝛾 = .99
• Values in the grid are Q(s,a)
• Blank quadrants have a Q-value of 0

.5*.5*.99



Problem: Exploration/Exploitation   

• But what if Frozen Lake had two 
goal states? 

32
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Problem: Exploration/Exploitation   

• But what if Frozen Lake had two 
goal states? 
• Q-Learning could learn a path to 

the .5 reward without ever 
getting to the 1 reward state. 

• Converges to a suboptimal 
solution

33
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Problem: Exploration/Exploitation   

• But what if Frozen Lake had two 
goal states? 
• Q-Learning could learn a path to 

the .5 reward without ever 
getting to the 1 reward state. 

• Converges to a suboptimal 
solution

• How can we balance exploiting 
knowledge we already have 
with exploring unseen parts of 
the state space? 

34

.5 1

Any ideas?



Solution: Epsilon-Greedy Policies 
• Instead of always following our 

estimate of Q, we instead take 
random actions 𝜖 percent of 
the time, where 𝜖 is a 
hyperparameter

• We can also decrease 𝜖 over 
time, as our estimates of Q 
improve
• Ex: after each episode, set 𝜖 =

A
(ABC), where i is the number of 
episodes experienced so far

• This lets the agent act less 
randomly over time 35

Random  
Number

𝑟

Pick a 
random 
action

𝑟 <
𝜖

Pick 
Best 

Action

r > 𝜖

Action Selection Procedure



Q-Learning Update in Code 

if np.random.rand(1) < epsilon:
 act = env.action_space.sample()
else:
 act = np.argmax(Q[st])
nst, rwd, done, _ = env.step(act)
Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd + 
gamma*V[nst])

36

Any questions?



Q-Learning Code Demo

https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgt
B9yY#scrollTo=sI_x2TsCp15L
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https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY
https://colab.research.google.com/drive/1yBCDzAXlu9j0A2aT8fH1zm7beBgtB9yY
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Simple/discrete

Complex/continuous

Value iteration
 

Q-Learning
 

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy 
of RL algorithms, see 
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.ht
ml#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html


Deep Q-learning

39



Limitations of Tabular Q-Learning 
• Tabular methods can’t handle large or continuous state spaces

• Can’t have a table for infinite Q or V values
• Lots of problems have these kinds of state spaces

• Robotic navigation: The state of the robot could be (map of environment, position), where position is a 2-
D vector. Infinite possible states in this setup. 

• Go: has ~10^170 states 

40

Too many possible 
values for a table 

Action(Ex: Left, 
Right, Up, Down) 

𝑎𝑟𝑔𝑚𝑎𝑥!(𝑄 𝑠, 𝑎 )

https://en.wikipedia.org/wi
ki/File:Cartoon_Robot.svg

s =
Position

, 𝑋𝑌

Map

https://www.flickr.com/photos
/mocklogic/8988098941

https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg
https://www.flickr.com/photos/mocklogic/8988098941
https://www.flickr.com/photos/mocklogic/8988098941


Beyond Tabular Learning 

41

Instead of storing every (s,a) in a table to learn this 
function, we can learn a function to approximate Q 

using a (relatively) small set of parameters 𝜃

In Q-learning, we are learning a function Q that maps 
from a state-action pair to a real number

𝑄: 𝑠, 𝑎 → ℝ

𝑄: 𝑠 → ℝ !   
Or, equivalently, from a state to a vector of real numbers 

𝑄: 𝑠, 𝑎, 𝜃 → ℝ, 𝜃 ≪ |𝑆×𝐴|



Neural Nets as Function Approximators

42

Neural networks are excellent function approximators, so we can 
use a deep network to learn this parameterized function 

(𝑠, 𝑎) ℝ

(𝑠) ℝ !



Frozen Lake Example 

43

State
Q 

Values
How do we set 
up this using 

neural 
networks?



Frozen Lake Example 

• Feed a one-hot representation of 
the state into a neural network to 
approximate the Q-value for each 
action

• One-hot vector of length 16 for 
frozen lake

• Can also pass in a more complex 
state to the Q-network rather 
than a one hot representation. 

• Useful when the number of states 
is very large, making a one hot 
representation impractical 

• Or when states are continuous
44

State
One-
hot 

Vector 
Q Network 

Q 
Values

S F F F

F H F H

F F F H

H F F G

1
0
0
0
0
0
0
0
⋮

𝑄(𝑠, 𝑎")
𝑄(𝑠, 𝑎')
𝑄(𝑠, 𝑎()
𝑄(𝑠, 𝑎))



TF Example Code for Frozen Lake 

# Weights for Q-Network 
Q = tf.Variable(tf.random.uniform([16,4],0,0.01))
# Q-value function 
def qVals(inptSt):
 oneH = tf.one_hot(inptSt,16)
 qVals = tf.matmul([oneH],Q)
 return qVals
# argmax over q-values to get estimated best action
action = tf.argmax(qVals(st),1)

45



Atari Example 
• 81x81 Images of the game

• Even if each pixel is just on or off, 
that’s 2HI×HI possible states, way 
too many for a table

• They’re actually colored, so real 
scenario is even worse 

• Need a different approach to learn 
Q and V values for large state 
spaces like these

46

https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg


How To Train This Q Network?

The original Q-learning update is not a minimization problem 

47

So how can we transform this into a loss function we can use? 

𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼(𝑅 𝑠, 𝑎, 𝑠5 + 𝛾𝑉 𝑠5 )



Recap
Wandering to estimate T and R

Q-learning:  Explore + Improve

Limitations of Tabular Q-learning

Tensorflow code

Deep Q-learning
Neural nets for Q approximation

Tabular Q-learning

Epsilon-Greedy Policies

For more reading: https://huggingface.co/learn/deep-rl-course/unit2/introduction?fw=pt

https://huggingface.co/learn/deep-rl-course/unit2/introduction?fw=pt



