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Reinforcement Learning: Deep-Q + REINFORCE

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”
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Simple/discrete

Complex/continuous

Value iteration
 

Q-Learning
 

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy 
of RL algorithms, see 
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.ht
ml#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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Review: Q-Learning 
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Use Q to pick action 𝑎!. 
Observe transition and 
get reward 𝑟!. Use 𝑟! to 
update	𝑄(𝑠!, 𝑎!) 
immediately

Repeat process for 𝑠". 
Update 𝑄(𝑠", 𝑎") with 
𝑟"



Review: The Q-Learning Update Rule
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Combining our new estimate for 𝑄(𝑠, 𝑎) with the weighted 
average equation, the final update rule for Q-Learning 
becomes 

𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄!"# 𝑠, 𝑎 + 𝛼𝑄$%& 𝑠, 𝑎

𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼(𝑅 𝑠, 𝑎, 𝑠* + 𝛾𝑉 𝑠* )



Review: Q-Learning Update in Code 

if np.random.rand(1) < epsilon:
 act = env.action_space.sample()
else:
 act = np.argmax(Q[st])
nst, rwd, done, _ = env.step(act)
Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd + 
gamma*V[nst])
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Review: Neural Nets as Function 
Approximators
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Neural networks are excellent function approximators, so we can 
use a deep network to learn this parameterized function 

(𝑠, 𝑎) ℝ

(𝑠) ℝ !



Review: TF Example Code for Frozen Lake 

# Weights for Q-Network 
Q = tf.Variable(tf.random.uniform([16,4],0,0.01))
# Q-value function 
def qVals(inptSt):
 oneH = tf.one_hot(inptSt,16)
 qVals = tf.matmul([oneH],Q)
 return qVals
# argmax over q-values to get estimated best action
action = tf.argmax(qVals(st),1)
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Designing our Loss Function

The update rule looks similar to gradient descent 

At what point is the change from the update rule zero? That would be 
our point of ‘zero loss’ 

This happens when 𝑄 𝑠, 𝑎 = 	𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉(𝑠′)
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𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼(𝑅 𝑠, 𝑎, 𝑠* + 𝛾𝑉 𝑠* )



Designing our Loss Function 
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We can then use the difference between our observed 
estimate and our old estimate as a loss function 

𝐿 = 𝑄 𝑠, 𝑎 − (𝑅 𝑠, 𝑎, 𝑠# + 𝛾(𝑚𝑎𝑥$𝑄 𝑠, 𝑎 )

𝑉 𝑠  becomes max
3
𝑄(𝑠, 𝑎) because we only learn an estimate 

for Q, without explicitly learning V. 

This loss is called the ‘temporal difference error’ or TD(0). The 
zero refers to how many steps we take before comparing our old 

estimate to the new. 



Designing our Loss Function 
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𝐿 = 𝑄 𝑠, 𝑎 − 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑚𝑎𝑥$𝑄 𝑠, 𝑎
%

TD(0) also isn’t the only option for a loss function. You can wait 
any number of steps in the environment before updating your 
estimates of Q. If you waited one additional step, you would 

have the TD(1) error. 

𝐿&'(") = 𝑄 𝑠, 𝑎 − 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑅 𝑠#, 𝑎#, 𝑠## + 𝛾%𝑚𝑎𝑥$𝑄 𝑠′′, 𝑎
%

In practice, we actually use the squared difference
between our current estimate and new observation

(to more heavily penalize large errors and to ensure loss is always positive)



DQN in Tensorflow 

if np.random.rand(1) < epsilon:
 act = env.action_space.sample()
else:
 act = np.argmax(Q[st])
nst, rwd, done, _ = env.step(act)
Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd + 
gamma*V[nst])
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• Start with original tabular Q-
Learning Code

• Replace Q table with Q 
network

• Replace weighted Q update 
with loss function

• Add gradient update step

Convert this into deep q-learning code



DQN in Tensorflow 

if np.random.rand(1) < epsilon:
 act = env.action_space.sample()
else:
 act = np.argmax(Q[st])
nst, rwd, done, _ = env.step(act)
Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd + 
gamma*V[nst])
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• Start with original tabular Q-
Learning Code



DQN in Tensorflow 

Q_values = qVals(st)
if np.random.rand(1) < epsilon:
 act = env.action_space.sample()
else:
 act = tf.argmax(Q_values)
nst, rwd, done, _ = env.step(act)
Q[st][act] = (1-alpha)Q[st][act] + alpha(rwd + 
gamma*V[nst])
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• Start with original tabular Q-
Learning Code

• Replace Q table with Q 
network



DQN in Tensorflow 

Q_values = qVals(st)
if np.random.rand(1) < epsilon:
 act = env.action_space.sample()
else:
 act = tf.argmax(Q_values)
nst, rwd, done, _ = env.step(act)
nextQ = qVals(nst)
target_Q = Q_values.numpy(); 
target_Q[act] = rwd + np.max(nextQ)
loss = tf.reduce_sum(tf.square(Q_values – target_Q))
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• Start with original tabular Q-
Learning Code

• Replace Q table with Q 
network

• Replace weighted Q update 
with loss function



DQN in Tensorflow 

Q_values = qVals(st)
if np.random.rand(1) < epsilon:
 act = env.action_space.sample()
else:
 act = tf.argmax(Q_values)
nst, rwd, done, _ = env.step(act)
nextQ = qVals(nst)
target_Q = Q_values.numpy(); 
target_Q[act] = rwd + np.max(nextQ)
loss = tf.reduce_sum(tf.square(Q_values – target_Q))
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• Start with original tabular Q-
Learning Code

• Replace Q table with Q 
network

• Replace weighted Q update 
with loss function

Note that we treat the next-step estimate of Q as our 
optimization “target” and do not differentiate through it



DQN in Tensorflow 

Q_values = qVals(st)
if np.random.rand(1) < epsilon:
 act = env.action_space.sample()
else:
 act = tf.argmax(Q_values)
nst, rwd, done, _ = env.step(act)
nextQ = qVals(nst)
target_Q = Q_values.numpy(); 
target_Q[act] = rwd + np.max(nextQ)
loss = tf.reduce_sum(tf.square(Q_values – target_Q))
optimizer.apply_gradients(tape.gradient(loss,Q),Q) 16

• Start with original tabular Q-
Learning Code

• Replace Q table with Q 
network

• Replace weighted Q update 
with loss function

• Add gradient update step

Any questions?



Code Demo 

https://drive.google.com/open?id=1cKkuEdoqnwe99dhxnBUz5KcRqRUqoFnk 
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https://drive.google.com/open?id=1cKkuEdoqnwe99dhxnBUz5KcRqRUqoFnk


Beyond Deep Q Networks (DQN)

• DQN is amazing!
• Can learn optimal play for 

Breakout, other Atari games given 
only raw pixels as input

• Does it have any weaknesses?
• DQN uses a neural net to learn an 

approximation of the Q function
• Could that ever be a hard learning 

problem?

18

https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg


Q Functions can be complex...

19𝒮' 𝒮(

• Consider an MDP with a continuous state 
space and two possible actions 𝑎" and 𝑎%

• Let’s divide this state space into two sets 
of states, 𝒮" and 𝒮% 



Q Functions can be complex...

20𝒮' 𝒮(

𝑸(𝒔, 𝒂𝟏) 𝑸(𝒔, 𝒂𝟐)

Gnarly function to learn to approximate...



...but policies can still be simple

21𝒮' 𝒮(

𝑸(𝒔, 𝒂𝟏) 𝑸(𝒔, 𝒂𝟐)

𝝅(𝒔 ∈ 𝓢𝟏) = 𝐚𝟏 𝝅(𝒔 ∈ 𝓢𝟐) = 𝐚𝟐

If the complexity in the Q function doesn’t affect the policy...
...why bother modeling it?



An Idea:

• Instead of learning a Q Network, and then extracting the policy from 
it:

• ...why don’t we just directly learn a Policy Network?
• i.e. have a neural net that takes in a state and outputs an action

22

(𝑠, 𝑎) 𝑄(𝑠, 𝑎) 𝜋 𝑠 = argmax
3

𝑄(𝑠, 𝑎)

𝑠 𝜋(𝑠)
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Simple/discrete
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Q-Learning
 

Deep Q-Networks
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For a more complete taxonomy 
of RL algorithms, see 
https://spinningup.openai.com/e
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https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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Policy Networks

• Q: 𝜋(𝑠) is a discrete action...how to make the network output that?
• A: Treat it like a classification problem—have the network output a 

probability distribution over actions

24

𝑠 𝜋(𝑠)

𝑠
𝑝 𝑎 𝑠)



Using a Policy Network

• Q: How to get a discrete action out of this distribution?
• A: Two possibilities:

1.  𝜋 𝑠 = argmax
3

𝑝(𝑎|𝑠)   à Deterministic policy (just like Q learning)

2.  𝜋 𝑠 = sample(𝑝(𝑎|𝑠)) à Stochastic policy
• Don’t always take the same action in the same situation
• Arguably, more ”naturalistic” behavior

25

𝑠
𝑝 𝑎 𝑠)



Training Policy Networks

• How do we train a network like this?
• We can’t just “adapt Q learning” somehow—this is a fundamentally 

different beast
• The study of how to learn policy networks lies at the core of most 

modern deep reinforcement learning research
• Family of learning algorithms known as Policy Gradient methods

• Let’s make this concrete via a specific example...
26

𝑠
𝑝 𝑎 𝑠)



The “Cart Pole” Environment
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Cart Pole

• Attempt to keep a pole vertically 
balanced on a moving cart
• Continuous-state MDP

• Not solvable with tabular Q-learning

• Still a “toy problem”
• This is an instance of a dynamic 

equilibrium problem in classical 
robotics / control theory.

• There exist closed-form solutions to 
the problem.

• But it’s also a fun test-case for RL J

28

[OpenAI Gym]

Note: the ‘jumps’ in the video are from the agent 
failing and the simulation restarting again

*A closed-form solution (or closed form expression) is any formula that can be evaluated in a 
finite number of standard operations.

http://www-robotics.cs.umass.edu/~grupen/503/SLIDES/cart-pole.pdf


Cart Pole MDP Formulation

• State: cart position, cart velocity, pole angle, pole tip velocity

• Actions: push cart to left or right
• Transition function: (deterministic) simulation of Newtonian physics
• Reward function: 1 for every step taken

• i.e. rewards keeping the pole balanced for as many steps as possible 29

Vel (Cart)

Pos (Cart)

Angle (Pole)

Vel (Pole)

Let’s define S, A,T, R



Training a Policy Network for Cart Pole

• Would be easy to do with supervised learning (i.e. if we had a ground-
truth expert demonstration to follow)

• Just use cross-entropy loss on the ground-truth “correct” action at 
every time step
• But we don’t have supervision in RL...so what do we do instead?

30

𝑠
𝑝 𝑎 𝑠)



Training a Policy Network for Cart Pole

• Naïve loss function: Play an episode of the simulation, record the 
states/actions taken 𝐬, 𝐚 = (𝑠!…𝑠" , 𝑎!…𝑎"), maximize the reward 
received at each timestep
• i.e. 𝐿 𝑠! , 𝑎! = −𝑟(𝑠! , 𝑎! , 𝑠!"#)

• Why is this not a good loss function?
• Just because an action keeps the pole up for one more timestep, doesn’t mean it will 

lead to keeping the pole up for the long term
• E.g. consider this state:

• Moving the cart the left will not make the pole tip over immediately (so you’ll get a 
reward of 1), but it will hasten the pole’s eventual tipping

31

Velocity

What should we 
do?



Training a Policy Network for Cart Pole

• Better loss function: maximize the expected future return that you’ll 
get from taking an action (not the immediate reward)

• i.e. 𝐿 𝑠6, 𝑎6 = −𝔼[𝐺6	|	𝑎6]
• What’s another name for the expected future return?

• The Q function! 𝐿 𝑠6, 𝑎6 = −𝔼[𝐺6 	𝑎6 = −𝑄(𝑠6, 𝑎6)	
• We don’t know Q, though (we’re trying to avoid estimating it)
• But, we can play an entire simulation episode to completion, and 

then see what future reward we got in that single episode.
• i.e. if the episode lasts 𝑇	steps, then  𝐿 𝑠6, 𝑎6 = −∑7869 𝛾7:;	𝑟( 𝑠7, 𝑎7, 𝑠7<;)

32



Training a Policy Network for Cart Pole

• Let’s call this the discounted future reward function: 
• 𝐷 𝑠6, 𝑎6 =	∑7869 𝛾7:6	𝑟( 𝑠7, 𝑎7, 𝑠7<;)

• This gives us a good idea for our ideal loss function: across every step 
of our simulated training episode 𝐬, 𝐚 , maximize the discounted 
future reward:

• 𝐿 𝐬, 𝐚 = −∑68;9 𝐷(𝑠6, 𝑎6)

• Brilliant! Let’s simulate some episodes, throw them at our favorite 
SGD optimizer, and call it a day :)

33



Not so fast...

• Let’s take a look at the computation graph for a single term of the 
discounted future reward function 𝐷 𝑠+ , 𝑎+ =	∑,-+. 𝛾,/+ 	𝑟( 𝑠, , 𝑎, , 𝑠,0')

34

𝑠6
𝑝 𝑎 𝑠6)

argmax
or

sample

𝑎6

Cartpole simulator

𝑟(𝑠6, 𝑎6, 𝑠6<;)

Do we anticipate any issues running 
SGD?



Not so fast...

• Let’s take a look at the computation graph for a single term of the 
discounted future reward function 𝐷 𝑠# , 𝑎# =	∑$%#" 𝛾$&#	𝑟( 𝑠$ , 𝑎$ , 𝑠$'!)

• Uh oh...it looks like we can’t use SGD because we don’t have an end-to-end 
differentiable function!

35

𝑠6
𝑝 𝑎 𝑠6)

argmax
or

sample

𝑎6

Cartpole simulator

𝑟(𝑠6, 𝑎6, 𝑠6<;)

This is not differentiable...

This is definitely not differentiable...



The Policy Gradient Theorem to the Rescue

• Fortunately, it turns out that we can get the behavior we want by 
running SGD with the following gradient:

−8
+-'

.

∇ log 𝑝 𝑎+|𝑠+ 𝐷(𝑠+ , 𝑎+)

36

We only need the gradient of this part, which 
is our (fully differentiable) policy network!

𝑠
𝑝 𝑎 𝑠)

Just like computing 
gradients through a 

classification network



Policy Gradient: Why It Works

−8
+-'

.

∇ log 𝑝 𝑎+|𝑠+ 𝐷(𝑠+ , 𝑎+)

• It’s possible to rigorously prove that this gradient does the right 
thing...
• ...but instead, we’re going to focus on the intuition behind what it 

does
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https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63


Policy Gradient: Why It Works

−8
+-'

.

∇ log 𝑝 𝑎+|𝑠+ 𝐷(𝑠+ , 𝑎+)

• This part says “maximize the probability of taking this action”
• If the sequence of actions 𝐚 = 𝑎'…𝑎.  from our episode were given 

by a ground truth demonstration, then this would be all we need.
• But they’re not. So, some of these actions that we took in our episode 

might not be so good, so we shouldn’t just blindly maximize them.
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Policy Gradient: Why It Works

−8
+-'

.

∇ log 𝑝 𝑎+|𝑠+ 𝐷(𝑠+ , 𝑎+)

• This part says “weight how much we maximize the probability of this 
action by how good that action was in the long term”

• If it led to positive reward in the long term, we try to maximize the probability
• If it led to zero reward in the long term, we leave the probability unchanged
• If it led to negative reward in the long term, we try to minimize the 

probability

39



Policy Gradient: Why It Works

−8
+-'

.

∇ log 𝑝 𝑎+|𝑠+ 𝐷(𝑠+ , 𝑎+)

• There are, in fact, many different approaches that fall under the 
umbrella of “policy gradient methods” and which look something like 
this
• This particular one is the simplest, and is known as REINFORCE

• No, it’s not an acronym for anything. The authors of the original paper just 
thought that shouting their algorithm name in all-caps would be a good idea...

40

Any questions?



REINFORCE: Pseudo Code

Initialize model weights 𝜃
Repeat until done (converge, time limit expired, etc.):
    Run N episodes of environment simulation, each for 𝑇 timesteps
        For each episode

      For 𝑡 = 1 to 𝑡 = 𝑇
 	 𝜃	 ← 	𝜃 + OptimizerStep ∇ log 𝑝 𝑎6|𝑠6 𝐷 𝑠6, 𝑎6

41

Return 𝜃
Your favorite optimizer (SGD, Adam, ...)



REINFORCE in action on Cart Pole

42https://www.youtube.com/watch?v=qx-KNh0I4CM

https://www.youtube.com/watch?v=qx-KNh0I4CM


Reinforce vs DQN

Pros Cons

43

What are the pros and cons of using 
REINFORCE over Deep Q-Network?



Reinforce vs DQN

Pros
• Policy often easier to learn than Q function
• Automates explore vs. exploit tradeoff

• Policy network starts off random and gradually 
becomes better as it is trained for more and 
more episodes

• Can learn stochastic policies
• More naturalistic behavior

• In practice, can converge faster than DQN

Cons
• Finds local optima more 

often than DQN...
• Unstable training
• Gradient updates only at 

end of each game (DQN 
updates after every step)

44

We’ll see how to fix these two 
issues in the next lecture...



Recap
Review of Q-learning

Deep Q-Network (DQN)

Q-Network à Policy Network

REINFORCE (Policy Gradient Network)

Policy gradient 
learning

Cart Pole Environment

Deep Q-learning

DQN in Tensorflow

Cartpole simulator




