
conversationalAILab.org

Talk: “Giving Agents Agency with : An Introduction to Augmenting
LLMs with LangChain”

The power LLMs and Gen AI can be dramatically amplified by giving
them access to computational tools and the capacity to reason at
each step whether to use its generative capacities or one of the
tools.

Speaker: Bradley Marx, Masters student in DSI, Brown

Location and Time: Friedman Hall, 102; Wednesday, April 24, 6-7 pm

Deep Learning
CSCI 1470/2470

Spring 2024

Ritambhara Singh

April 24, 2024
Wednesday

Reinforcement Learning: Actor-Critic

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Review: Policy Network for Cart Pole

3

𝑠
𝑝 𝑎 𝑠)

−"
!"#

$

∇ log 𝑝 𝑎!|𝑠! 𝐷(𝑠! , 𝑎!)Policy Gradient:

Review: REINFORCE: Pseudo Code

Initialize model weights 𝜃
Repeat until done (converge, time limit expired, etc.):
 Run N episodes of environment simulation, each for 𝑇 timesteps
 For each episode

 For 𝑡 = 1 to 𝑡 = 𝑇
 	 𝜃	 ← 	𝜃 + OptimizerStep ∇ log 𝑝 𝑎/|𝑠/ 𝐷 𝑠/, 𝑎/

4

Return 𝜃
Your favorite optimizer (SGD, Adam, ...)

Reinforce vs DQN

Pros
• Policy often easier to learn than Q function
• Automates explore vs. exploit tradeoff

• Policy network starts off random and gradually
becomes better as it is trained for more and
more episodes

• Can learn stochastic policies
• More naturalistic behavior

• In practice, can converge faster than DQN

Cons
• Finds local optima more

often than DQN...
• Unstable training
• Gradient updates only at

end of each game (DQN
updates after every step)

5

We’ll see how to fix these two
issues in the next lecture...

Issues with REINFORCE

• High Variance
• Multiple runs of training an

agent with REINFORCE can
yield very different results

• Susceptible to local optima

• High “sample complexity”
• Must play an entire episode to get gradient, takes many episodes to learn

6

All
Policies

Optimal
Policies

Local
Optimum

Local
Optimum

Random
initial policy

First, going to address this problem...

...which will actually give us a solution for this problem via a simple extension

The Solution:
Looking at Policy
Gradient
through a
different “lens”

7

8

Simple/discrete

Complex/continuous

Value iteration

Q-Learning

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy
of RL algorithms, see
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.ht
ml#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

The “Actor Critic” Framework

Consider the REINFORCE gradient:

−$
!"#

$

∇ log 𝑝 𝑎!|𝑠! 𝐷(𝑠! , 𝑎!)

9

The “Actor Critic” Framework

Consider the REINFORCE gradient:

−$
!"#

$

∇ log 𝑝 𝑎!|𝑠! 𝐷(𝑠! , 𝑎!)

10

Actor:
Specifies how to (probabilistically)
choose actions for a given state

The “Actor Critic” Framework

Consider the REINFORCE gradient:

−$
!"#

$

∇ log 𝑝 𝑎!|𝑠! 𝐷(𝑠! , 𝑎!)

11

Actor:
Specifies how to (probabilistically)
choose actions for a given state

Critic:
“Scores” the goodness/badness of
taking an action

Different critics are possible
• E.g. 𝑄 𝑠! , 𝑎! , if we knew it
• Recall that 𝑫 𝒔𝒕, 𝒂𝒕 is our

single-episode estimate of
𝑸 𝒔𝒕, 𝒂𝒕

The trick to solving our problems:
Coming up with a better critic function...

The Problem: High Variance

12

• To understand why this happens, have to dig into the math a little bit

All
Policies

Optimal
Policies

Local
Optimum

Local
Optimum

Random
initial policy

High Variance

13

• For a random variable 𝑋: 𝑉𝑎𝑟 𝑋 = 𝐸[𝑋	 − 𝐸[𝑋] %]
• The expected squared difference from the expected value
• “The average distance from the average”

mean

Low Variance

mean

High Variance

High Variance in REINFORCE

14

• The REINFORCE gradient:	 −∑!"#$ ∇ log 𝑝 𝑎!|𝑠! 𝐷(𝑠! , 𝑎!)
• 𝐷 𝑠! , 𝑎! is a random variable, because it depends on following a

stochastic policy (and a potentially stochastic transition function)
• Assertion: 𝐷 𝑠! , 𝑎! is high variance
• Why?

• 𝐷 𝑠/, 𝑎/ can be very low or very high depending on subsequent actions
• Especially for actions taken early in the episode
• Especially early in training, when the policy is mostly random

Out of the two terms,
which is more likely

produce high variance?

High Variance Rewards: Frozen Lake

• Frozen Lake
• S: Starting Point
• F: Frozen
• H: Hole, ends episode
• G: Goal

• Look at 𝐷(𝑠& = 𝑆, 𝑎& = down)

• S F F F
F H F H
F F F H
H F F G

15

Very Low Reward

Very High Reward

High Variance Rewards: VizDoom

16https://www.youtube.com/watch?v=93TrfMZ2Dqs

https://www.oreilly.com/ideas/reinforcement-learning-with-tensorflow

This thick line is the average reward as a function of training time
(averaged over multiple training runs)

The shaded region is the variance...

https://www.youtube.com/watch?v=93TrfMZ2Dqs
https://www.oreilly.com/ideas/reinforcement-learning-with-tensorflow

High Variance in REINFORCE

17

• 𝐷 𝑠! , 𝑎! is high variance
• This in turn makes −∑!"#$ ∇ log 𝑝 𝑎!|𝑠! 𝐷 𝑠! , 𝑎! have high variance
• What’s the consequence of high variance gradients?

• Magnitude and direction of gradients is unstable
• Need very low learning rate to keep training from blowing up
• Low learning rate à need lots of training episodes to converge

High Variance in REINFORCE

18

• Naïve solution: if the gradients fluctuate too much, just scale them so
they don’t fluctuate as much

• −∑/567 ∇ log 𝑝 𝑎/|𝑠/ 𝐷(𝑠/, 𝑎/) à −𝜷∑/567 ∇ log 𝑝 𝑎/|𝑠/ 𝐷(𝑠/, 𝑎/)

• Why won’t this work?
• Scaling the gradients is equivalent to scaling the learning rate, which is exactly

what we’re trying to avoid!

Solving High Variance: A Better Critic

• A better critic function:

𝐴 𝑠! , 𝑎! = 𝑄 𝑠! , 𝑎! − 𝑉 𝑠!
	 = 𝑄 𝑠! , 𝑎! −max

'!
𝑄(𝑠! , 𝑎!)

• This is called the advantage function
• The “advantage” of taking action 𝑎/ vs. taking the best possible action in state
𝑠/, under the current policy

• Claim: 𝐴 𝑠! , 𝑎! has lower variance than 𝑄 𝑠! , 𝑎! (or 𝐷 𝑠! , 𝑎!)

19

Why 𝐴 𝑠! , 𝑎! has lower variance

• Consider these two states in Cart Pole

20

A B

Stable-ish, but starting to go bad Hopeless...

Why 𝐴 𝑠! , 𝑎! has lower variance

• What would be the Q value of taking the ß action in either state?

21

A B

Stable-ish, but starting to go bad Hopeless...

𝑄 𝑆&, ← :	 Good! (helps stabilize) 𝑄 𝑆' , ← :	 Bad... (tipping over and this isn’t helping)

𝑸 𝑺𝑨, ← 	− 𝑸 𝑺𝑩, ← :	 Large, i.e. high variance...

Why 𝐴 𝑠! , 𝑎! has lower variance

• Now consider the A value of taking the ß action in either state:

22

A B

Stable-ish, but starting to go bad Hopeless...

𝐴 𝑆&, ← :	 Zero (this is the best action) 𝐴 𝑆' , ← :	 Tiny negative number (not the best action,
 but state is already bad)

𝑨 𝑺𝑨, ← 	− 𝑨 𝑺𝑩, ← :	 Small difference! Lower variance

𝐴 𝑠! , 𝑎! = 𝑄 𝑠! , 𝑎! − 𝑉 𝑠!
	 = 𝑄 𝑠! , 𝑎! −max

*!
𝑄(𝑠! , 𝑎!)

What will be the A values
for situation A and B

(conceptually)?

The Advantage of Using Advantage

• The main idea: to learn a policy, it doesn’t matter whether some
states are better than others. All that matters is which actions are
better for a given state.
• Factor out the difference in state value and just look at the difference

in action value
• 𝐴 𝑠#, 𝑎# − 𝐴(𝑠%, 𝑎%) < 𝑄 𝑠#, 𝑎# − 𝑄(𝑠%, 𝑎%)

23
This Photo by Unknown Author is licensed under CC BY-NC

http://www.newgrounds.com/art/view/psibat/happy-face
https://creativecommons.org/licenses/by-nc/3.0/

Using Advantage in REINFORCE

• Substitute in the advantage function for the critic:

−$
!"#

$

∇ log 𝑝 𝑎!|𝑠! 𝐴(𝑠! , 𝑎!)

• Of course, in practice, we don’t have 𝑄, so we use 𝐷 instead:

−$
!"#

$

∇ log 𝑝 𝑎!|𝑠! 𝐷(𝑠! , 𝑎!) − 𝑉 𝑠!
24Wait a minute...we also don’t have 𝑽...

Are we done?

Value Networks

• Use another neural net, the Value Network, to learn an approx. of 𝑉
• Like Policy Network, architecture depends on the MDP being solved

(i.e. what data representation its state uses)
• For Cart Pole, state is a 4D vector of real numbers

• [Cart pos, cart vel, pole ang, pole tip vel]

• Fully connected net is appropriate here:

25

𝑠/ 𝑉(𝑠/)

How to Train a Value Network

• Recall the definition of the Value Function
• Expected future return from being in a given state
• 𝑉 𝑠" = max

#+
𝑄(𝑠" , 𝑎")

• What data do we get from each episode that we might use for training?
• The discounted future reward that we got in that episode, from each timestep
• 𝐷 𝑠" , 𝑎" =	∑$%"& 𝛾$'(𝑟(𝑠$, 𝑎$, 𝑠$)()

• Idea: just as we used 𝐷 as an approximation for 𝑄, let’s also use it to
approximate 𝑉
• i.e. train the Value Network with (input, output) pairs of the form 𝑠" , 𝐷 𝑠" , 𝑎"
• When trained with many such pairs obtained over many episodes, the network will

learn to output a good estimate of the future reward that can be expected starting
from the input state—in other words, the Value Function!

26

How to Train a Value Network

• Training loss: 𝐿 𝑠! = 𝐷 𝑠! , 𝑎! − 𝑉 𝑠!
"

, where 𝑉	is the Value Network
• Does this look familiar?
• This is exactly the “advantage” term in our gradient update!

−+
!#$

%

∇ log 𝑝 𝑎!|𝑠! 𝐷(𝑠! , 𝑎!) − 𝑉 𝑠!

• In other words: training the value network == minimizing the advantage
• Which is exactly what we want in order to lower the variance!

• The 𝑉 𝑠! term in the gradient update is also called a “baseline,” which
gives this algorithm the name REINFORCE with Baseline (RwB)

27

Any questions?

REINFORCE: Pseudo Code

Initialize policy net weights 𝜃
Repeat until done (converge, time limit expired, etc.):
 Run N episodes of environment simulation, each for 𝑇
timesteps

 For each episode
 For 𝑡 = 1 to 𝑡 = 𝑇
 	 𝜃	 ← 	𝜃 + OptimizerStep ∇ log 𝑝 𝑎/|𝑠/ 𝐷 𝑠/, 𝑎/

28

Return 𝜃

Modify the code to RL w/
baseline

RwB: Pseudo Code

Initialize policy net and value net weights 𝜃
Repeat until done (converge, time limit expired, etc.):
 Run N episodes of environment simulation, each for 𝑇
timesteps

 For each episode
 For 𝑡 = 1 to 𝑡 = 𝑇
 𝐿DEFGH = − log 𝑝 𝑎/|𝑠/ 𝐷 𝑠/, 𝑎/ 	− 𝑉(𝑠/)
 𝐿EHIFIE = 𝐷 𝑠/, 𝑎/ − 𝑉 𝑠/

J

 	 𝜃	 ← 	𝜃 + OptimizerStep ∇(𝐿DEFGH + 𝐿EHIFIE)

29

Return 𝜃

RwB: Pseudo Code

Initialize policy net and value net weights 𝜃
Repeat until done (converge, time limit expired, etc.):
 Run N episodes of environment simulation, each for 𝑇
timesteps

 For each episode
 For 𝑡 = 1 to 𝑡 = 𝑇
 𝐿DEFGH = −log 𝑝 𝑎/|𝑠/ 𝐷 𝑠/, 𝑎/ 	− 𝑉(𝑠/)
 𝐿EHIFIE = 𝐷 𝑠/, 𝑎/ − 𝑉 𝑠/

J

 	 𝜃	 ← 	𝜃 + OptimizerStep ∇(𝐿DEFGH + 𝐿EHIFIE)

30

Return 𝜃

In practice, batch episodes and/or
timesteps rather than looping over them

Cart pole with Actor-Critic

https://medium.com/nerd-for-tech/policy-gradients-reinforce-with-baseline-6c871a3a068

The number of episodes needed to obtain maximum reward << than that for REINFORCE

Issues with REINFORCE

• High Variance
• Multiple runs of training an

agent with REINFORCE can
yield very different results

• Susceptible to local optima

• High “sample complexity”
• Must play an entire episode to get gradient, takes many episodes to learn

32

All
Policies

Optimal
Policies

Local
Optimum

Local
Optimum

Random
initial policy

First, going to address this problem...

...which will actually give us a solution for this problem via a simple extension

Dealing with Sample Complexity

33

Enabling more frequent gradient updates

• In REINFORCE, we have to wait until the end of an episode to make a
gradient update
• That’s because our gradient is −∑!"#$ ∇ log 𝑝 𝑎!|𝑠! 𝐷(𝑠! , 𝑎!)

• To calculate 𝐷(𝑠/, 𝑎/), we need to know everything that happens up to the
end of the episode

• You could cut the episode off early, but then 𝐷(𝑠! , 𝑎!) would be
biased
• What would happen if we did this while training on Frozen Lake?

• The only nonzero reward comes on the very last step of the episode
• If we cut the episode off early, we’d never see this reward, and the agent

would never learn anything!

34

Enabling more frequent gradient updates

• RwB gives us a way to cut the episode off early (or pause it) and take
a gradient update without introducing bias
• Recall the definition of 𝐷 𝑠! , 𝑎! :

𝐷 𝑠! , 𝑎! =	$
("!

$

𝛾()#	𝑟(𝑠(, 𝑎(, 𝑠(*#)

• Write it as a recurrence relation:
𝐷 𝑠$, 𝑎$ = 0

𝐷 𝑠! , 𝑎! = 𝑟 𝑠! , 𝑎! , 𝑠!*# + 𝛾𝐷(𝑠!*#, 𝑎!*#)

35

Enabling more frequent gradient updates

• At any point, we can choose to stop expanding this recurrent relation and
instead use our value network to estimate the remainder of 𝐷:

𝐷 𝑠! , 𝑎! = 𝑟 𝑠! , 𝑎! , 𝑠!&$ + 𝛾𝐷(𝑠!&$, 𝑎!&$)

𝐷 𝑠! , 𝑎! = 𝑟 𝑠! , 𝑎! , 𝑠!&$ + 𝛾𝑉(𝑠!&$)

• Fun fact: this strategy is how AlphaGo trained itself to play Go without
having to explore the (massive) search tree of a Go game: it could
terminate the search early and use a trained value network to estimate the
value of being in a particular board state

36

Reducing the number of episodes needed

• Simulating episodes can be very compute-intensive

• More intensive, in fact, than training the networks!
• AlphaGo used 64 GPUs and 19 CPUs for its model updates...
• ...but it used ~5,500 TPUs for its Go simulations to create training episodes

• Idea: get more out of the training episodes we’ve already simulated by
periodically re-using them
• Not a crazy idea: we iterate multiple epochs over the same training set in supervised

learning, after all

• Known as Experience Replay
37

https://en.wikipedia.org/wiki/Tensor_processing_unit

Experience Replay can also stabilize training!

• Recall from way back at the beginning of the class: SGD assumes that the
training data is IID (independent, identically distributed)
• Time steps taken from a simulated MDP episode are definitely not

independent
• 𝑠*, 𝑎* , 𝑠(, 𝑎(, … , (𝑠+, 𝑎+) à successive time steps are highly correlated

• By training on this data, agent could overfit to patterns in one episode,
then have to un-learn when presented with a different episode
• Experience replay mixes up timesteps from past/present episodes, making

the data “more IID”
• Think of it like the agent ‘teleporting’ around to different timesteps of different

episodes during training

38

Any questions?

Experience Replay: Caveat

• As the agent gets better over time, episodes from earlier in training
become less valuable (even useless)
• Why?

• Those mostly explore bad parts of the state space from when the agent was
flailing around randomly

• Now it knows not to go to those states anymore, so why bother learning what
to do in them?

39

Experience Replay: Caveat

• Solution: only keep a limited-size buffer of episodes

• Train on randomly-sampled timesteps from these episodes, for some
number of training steps

40

Ep 1 Ep 2 Ep 3 Ep 500...

Experience Replay: Caveat

• Solution: only keep a limited-size buffer of episodes

• Train on randomly-sampled timesteps from these episodes, for some
number of training steps
• Then, sample a new episode, add to the buffer, and remove the

oldest episode in the buffer
• i.e. the buffer is a queue

41

Ep 1 Ep 2 Ep 3 Ep 500... Ep 501

Issues with REINFORCE

• High Variance
• Multiple runs of training an

agent with REINFORCE can
yield very different results

• Susceptible to local optima

• High “sample complexity”
• Must play an entire episode to get gradient, takes many episodes to learn

42

All
Policies

Optimal
Policies

Local
Optimum

Local
Optimum

Random
initial policy

First, going to address this problem...

...which will actually give us a solution for this problem via a simple extension

43

Simple/discrete

Complex/continuous

Value iteration

Q-Learning

Deep Q-Networks

REINFORCE

Actor-Critic

For a more complete taxonomy
of RL algorithms, see
https://spinningup.openai.com/e
n/latest/spinningup/rl_intro2.ht
ml#citations-below

Organizing RL problems/algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

