
Deep Learning
CSCI 1470/2470

Spring 2022

Ritambhara Singh

January 31, 2024
Wednesday

Perceptron cond. and Loss Functions

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Lab1, Homework 1 and
Quiz 1 out today!

Today’s goal – Continue discussion on
perceptron and learn about the loss functions

(1) Perceptron learning algorithm

(2) Extending perceptron for Multi-class classification

(3) Loss functions for
- Regression
- Classification

Recap: A Binary Perceptron for MNIST

• Inputs 𝑥!, 𝑥", … 𝑥# are all positive
• 𝑛 = 784 (28×28 pixel values)

• output is either 0 or 1
• 0 à input is not the digit type

we’re looking for
• 1 à input is the digit type we’re

looking for

3

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑤!

𝑤#
𝑤%

𝑤$

𝑤"

Σ

⋮
𝑥&'#

𝑤!"#⋮

𝑏

Training Data Training Labels

f (“model”)

Loss function

Optimizer

Output

Error

Training a perceptron

Input: 𝕏 Target: 𝕐

0. set the parameters Φ = 𝑤⋃𝑏 to 0

1. Iterate over training set several
times,
feeding in each training example
into the model,
producing an output,
and adjusting the parameters
according to whether that output
was right or wrong

2. Stop once we either
(a) get every training
example right or
(b) after 𝑁 iterations, a
number set by the
programmer.

𝑁 is known as the number of epochs, where each epoch is an
iteration of going through all data points in the training set

As a general rule of thumb, 𝑁 grows with the number of
parameters

The Perceptron Learning Algorithm

1. set 𝑤’s to 0.
2. for𝑁 iterations, or until the weights do not change:

a) for each training example x* with label 𝑦*

i. if 𝑦* − 𝑓 x* = 0 continue

ii. else for all weights𝑤+, ∆𝑤+ = 𝑦* − 𝑓 𝐱* 𝑥+*

5

• 𝑏 = bias
• 𝑤 = weights
• 𝑁	 = maximum	number	of	training	iterations

• x(= k)*	training	example

• 𝑦(= label	for	the	k)*example
• 𝑤+ = weight	for	the	i)*	input	where	𝑖 ≤ 𝑛
• 𝑛 = number	of	pixels	per	image
• 𝑥+(= i)*	input	 of	the	example	where		𝑖 ≤ 𝑛

The Perceptron Learning Algorithm

1. set 𝑤’s to 0.
2. for𝑁 iterations, or until the weights do not change:

a) for each training example x* with label 𝑦*

i. if 𝒚𝒌 − 𝒇 x𝒌 = 𝟎 continue

ii. else for all weights𝑤+, ∆𝑤+ = 𝑦* − 𝑓 𝐱* 𝑥+*

6

• If the output of our model matches the label, we continue
• If the correct label is 1, and our output is 1, 1 − 1 = 0
• If the correct label is 0, and our output is 0, 0 − 0 = 0

The Perceptron Learning Algorithm

1. set 𝑤’s to 0.
2. for𝑁 iterations, or until the weights do not change:

a) for each training example x* with label 𝑦*

i. if 𝑦* − 𝑓 x* = 0 continue

ii. else for all weights𝒘𝒊, ∆𝒘𝒊 = 𝒚𝒌 − 𝒇 𝐱𝒌 𝒙𝒊𝒌

7

• If our label 𝑦! is a 1, and our model’s output is a 0, we update the 𝑖"# weight by:
• 1 − 0 $ 𝑥!" = 𝑥!"
• Output was 0 and should have been 1, so make the output more positive

• If our label 𝑦! is a 0, and our model’s output is a 1, we update the 𝑖"# weight by:
• 0 − 1 $ 𝑥!" = −𝑥!"

• Output was 1 and should have been 0, so make the output more negative

Example: Predict whether a digit
is a “2”

8

Predict whether a digit is a “2”

9

𝑥! = 0.8
𝑥" = 0

𝑥!

𝑥"

Just look at the effect of these two pixels

Predict whether a digit is a “2”
• Start off training with all parameters as 0, so 𝑤! =0, 𝑤" = 0, and 𝑏 = 0
• 𝑓 𝑥 = (𝑤! I 𝑥! + 𝑤" I 𝑥" + 𝑏. 1)
• 𝑓 𝑥 = 0 I 0.8 + 0 I 0 + 0 I 1 = 0

• Return 0 because value is not greater than 0

• Predict that it is not a 2!
• Correct answer: it is a 2...
• Parameter update:

• ∆𝑤" = 1 − 0 * 0.8 = 0.8
• ∆𝑤# = 1 − 0 * 0 = 0
• ∆𝑏 = 1 − 0 * 1 = 1

• Now
• 𝑤" = 0.8
• 𝑤# = 0
• 𝑏 = 1

10

𝑥!

𝑥"

𝑥! = 0.8
𝑥" = 0

True label = 1

Predict whether a digit is a “2”

• Next example:

11

𝑥"

𝑥!

𝑥! = 0.9
𝑥" = 0.9

𝑤! = 0.8
𝑤" = 0
𝑏 = 1

Remember the starting
weights are now:

Predict whether a digit is a “2”
• At end of last iteration:

• 𝑤! = 0.8,	𝑤" = 0, and 𝑏 = 1

• 𝑓 𝑥 = (𝑤" * 𝑥" + 𝑤# * 𝑥# + 𝑏. 1)

• 𝑓 𝑥 = (0.8 * 0.9 + 0 * 0.9 + 1 * 1) > 0
• Return 1 because value is greater than 0

• Predict that it is a 2!
• Correct answer: it is not a 2...
• Parameter update:

• ∆𝑤! = 0 − 1 7 0.9 = −0.9
• ∆𝑤" = 0 − 1 7 0.9 = −0.9
• ∆𝑏 = 0 − 1 7 1 = −1

• Now
• 𝑤! = 0.8 − 0.9 = −0.1
• 𝑤" = 0 − 0.9 = −0.9
• 𝑏 = 1 − 1 = 0

12

𝑥"

𝑥!

𝑥! = 0.9
𝑥" = 0.9

True label = 0

Any questions?

Multi-class problem

13

Input: 𝕏 Target: 𝕐

Function: f

Pixel Grid Which digit is it?

Bringing back the complexity

28x28 pixels

Classifying MNIST digits requires
predicting 1 of 10 possible values

𝑥(!) =

𝑥(") =

𝑦(!) = “2”

𝑦(") = “0”

f(𝕏)à 𝕐

Rather than predicting
whether a handwritten digit
is of a certain class, we
predict the class it is most
likely in

How do we do that?

Using multiple perceptrons

• We can extend perceptrons to multi-class problems by creating 𝑚 perceptrons,
where m= the number of classes

• For MNIST, we would have 10 perceptrons

• Each individual perceptron returns a value, so our model will return the class
whose perceptron value is the highest.
• Here, “perceptron value” refers to the value of the weighted sum before being

thresholded.

15

Using multiple perceptrons

Perceptron for predicting
whether handwritten digit is a 0

Perceptron for predicting
whether handwritten digit is a 9

16

⋮⋮

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑤!

𝑤#

𝑤%

𝑤&

𝑤'

𝑤$

𝑤"

Σ 𝑜𝑢𝑡𝑝𝑢𝑡

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑤!

𝑤#

𝑤%

𝑤&

𝑤'

𝑤$

𝑤"

Σ 𝑜𝑢𝑡𝑝𝑢𝑡

Multi-class Perceptron

Three separate perceptrons Three perceptrons sharing inputs

17

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑤!

𝑤#

𝑤%

𝑤&

𝑤'

𝑤$

𝑤" Σ

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑤!

𝑤#

𝑤%

𝑤&

𝑤'

𝑤$

𝑤"

Σ

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑤!

𝑤#

𝑤%

𝑤&

𝑤'

𝑤$

𝑤"

Σ =
𝑤%,'

𝑤(,)

𝑤),'

𝑤*,)

𝑤*,'

𝑤+,,

𝑤%,)

𝑤','

𝑤',)

𝑤,,'

𝑤,,)

𝑤),)

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑥(

𝑥)

𝑤),,

𝑤*,,

𝑤(,,

𝑤%,,

𝑤+,)

𝑤',,

𝑤,,,

Σ

Σ

Σ

𝑤+,'

𝑤(,'

𝑜𝑢𝑡𝑝𝑢𝑡!

𝑜𝑢𝑡𝑝𝑢𝑡"

𝑜𝑢𝑡𝑝𝑢𝑡$
𝑜𝑢𝑡𝑝𝑢𝑡'

𝑜𝑢𝑡𝑝𝑢𝑡,

𝑜𝑢𝑡𝑝𝑢𝑡)

Is there anything the Perceptron can’t learn?

AND Function

18

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

x2

x1

AND Function

Output = 1

Output = 0

𝑤5 ⋅ 𝑥5 + 𝑤6 ⋅ 𝑥6 + 𝑏 > 0	?

Linear decision
boundary

Perceptrons work well with
linearly separable data

OR Function

19

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

x2

x1

OR Function

Output = 1

Output = 0

𝑤5 ⋅ 𝑥5 + 𝑤6 ⋅ 𝑥6 + 𝑏 > 0	?

XOR Function

20

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

x2

x1

XOR Function

Output = 1

Output = 0

𝑤5 ⋅ 𝑥5 + 𝑤6 ⋅ 𝑥6 + 𝑏 > 0	?

𝑤5 ⋅ 𝑥5 + 𝑤6 ⋅ 𝑥6 + 𝑏 > 0	?

Need two linear decision boundaries to represent this function...

Complicated data would need a complicated function!

Multi-Layered Neural Net

21
A Multi-Layered Neural Net

Any questions?

May see the term
Multi-Layer
Perceptron (MLP),
HOWEVER
"perceptrons" are
not perceptrons in
the strictest possible
sense

We really don’t use
the threshold
function of a
perceptron but still
use the linear
function

How do we train multi-layer networks?

• Unfortunately, the perceptron algorithm doesn’t generalize beyond
the one-layer case... L

• We need a new algorithm...

22

A one-layer binary
perceptron

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑤!

𝑤#
𝑤%
𝑤&
𝑤'

𝑤$

𝑤"

Σ

1. set 𝑤’s to 0.

2. for	𝑁	iterations, or until the weights do not change:
a) for each training example x(with label 𝑎(

i. if 𝑎(− 𝑓 x(= 0 continue

ii. else for all weights	𝑤+ , ∆𝑤+ = 𝑎(− 𝑓 x(𝑥+

A critical ingredient for our new approach:
Loss functions

23

Training
Data

Training
Labels

𝑓 (“model”) Loss function

Optimizer

Output

Erro
r

A critical ingredient for our new approach:
Loss functions

24

Training
Data

Training
Labels

𝑓 (“model”) Loss function

Optimizer

Output

Erro
r

What is a Loss Function?

• A function 𝐿 which measures how “wrong” a network is

• 𝐿 is computed by comparing two values (predicted and true) that
shows which is better

• Evaluate 𝐿 and update parameters to decrease 𝐿, making the network
“less wrong”

25

Recap – regression task
Input: 𝕏 Target: 𝕐

“Profit made on selling
lemonade”“Temperature”

𝕏	 ∈ ℝ	

𝕐 ∈ ℝ	
(Numerical output)

Regression

100.1

30.3

60.0

200.0

145.1

160.5

𝑥(!) =

𝑥(") =

𝑥(W) =

𝑦(!) =

𝑦(") =

𝑦(W) =

Function: f

f(X)àY

(Image	only	for	explaining	concept,	not	drawn	accurately)

Recap: Learning function f
Input: 𝕏 Target: 𝕐

“Profit made on selling
lemonade”“Temperature”

𝕏	 ∈ ℝ	

𝕐 ∈ ℝ	
(Numerical output)

100.1

30.3

60.0

200.0

145.1

160.5

𝑥(!) =

𝑥(") =

𝑥(W) =

𝑦(!) =

𝑦(") =

𝑦(W) =

Function: f

f(X)àY
𝑥(!)

Linear function
y = 𝑤𝑥 + 𝑏

Temperature (𝕏)

Pr
of

it
(𝕐

)

𝑦 = 2𝑥

(Image	only	for	explaining	concept,	not	drawn	accurately)

(𝑥(!), 𝑦(!))

(𝑥("), 𝑦("))

What could be our loss
function?

Mean Squared Error (MSE)

Courtesy: https://statisticsbyjim.com/regression/mean-squared-error-mse/

Average squared residual (residual: difference between predicted and true value)

Decreasing the MSE = the model has less error = data points fall closer to the regression line

𝑀𝑆𝐸 =
∑(;!< (𝑦(− 	 _𝑦()"

𝑛
MSE is the average squared
distance between the observed
and predicted values

What could be the
purpose of squaring the

distance?

𝑦(: 	𝑡𝑟𝑢𝑒	𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒

_𝑦(: 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒

𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠

Mean Squared Error (MSE)

Courtesy: https://statisticsbyjim.com/regression/mean-squared-error-mse/

Average squared residual (residual: difference between predicted and true value)

Decreasing the MSE = the model has less error = data points fall closer to the regression line

𝑀𝑆𝐸 =
∑(;!< (𝑦(− 	 _𝑦()"

𝑛

What could be the
purpose of squaring the

distance?

𝑦(: 	𝑡𝑟𝑢𝑒	𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒

_𝑦(: 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒

𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠

Input: 𝕏 Target: 𝕐

Function: f

Pixel Grid Is it digit 2?

Recap: Binary classification

28x28 pixels

𝑥(!) =

𝑥(") =

𝑦(!) = “1”

𝑦(") = “0”

What is a good loss for
our binary classification?

We want our network to
produce the right answer

with high probability

1. Make the network output a
probability for class 1
(a value between 0 and 1)

2. Use this probability to compute a loss

Cross Entropy Loss (for Binary classification)

𝑦 = 𝑡𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠 0	𝑜𝑟	1
𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠	1

log	(𝑝)

log 0.9 = −0.04

log 0.001 = −3

Some examples:

log 0.5 = 	−0.3

When the true label is 1
we want higher predicted
probability for a digit to

be 2

When the true label is 0
we want lower predicted
probability for a digit to

be 2

Cross Entropy Loss (for Binary classification)

𝑦 = 𝑡𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠 0	𝑜𝑟	1
𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠	1

−log	(𝑝)

log 0.9 = −0.04

log 0.001 = −3

Some examples:

log 0.5 = 	−0.3

Cross Entropy Loss (for Binary classification)

𝑦 = 𝑡𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠 0	𝑜𝑟	1
𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠	1

−(y	log	(𝑝))

log 0.9 = −0.04

log 0.001 = −3

Some examples:

log 0.5 = 	−0.3

Cross Entropy Loss (for Binary classification)

𝑦 = 𝑡𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠 0	𝑜𝑟	1
𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠	1

−(y	log 𝑝 + (1 − 𝑦)	log(1 − 𝑝))

log 0.9 = −0.04

log 0.001 = −3

Some examples:

log 0.5 = 	−0.3

y = 1, p = 0.9

y = 0, p = 0.9

y = 1, p = 0.001

y = 0, p = 0.001We get this
probability by using
a Sigmoid function

Any questions?

Input: 𝕏 Target: 𝕐

Function: f

Pixel Grid Which digit is it?

Recap: Multi-class classification

28x28 pixels

𝑥(!) =

𝑥(") =

𝑦(!) = “2”

𝑦(") = “0”

We want our network to
produce the right answer

with high probability

1. Make the network output
probabilities for all classes
(values between 0 and 1)

2. Use these probabilities to compute a loss

Cross Entropy Loss (for Multi-class classification)

Classes
(m)

“0”

“1”

“2”

y

0

0

1

We want model to assign
high probability to the
true class and low to

others log 0.9 = −0.04

log 0.001 = −3

Some examples:

log 0.5 = 	−0.3

−m
=;!

>

𝑦= 	log(𝑝=) p

0.3

0.2

0.5

Recap Perceptron training w/ working
example

Multi-class classification

When perceptron
fails

Perceptron

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑤!

𝑤#

𝑤%

𝑤&

𝑤'

𝑤$

𝑤"

Σ

𝑏

MSE loss for regression

Cross entropy loss for binary
classification

Cross entropy loss for
multi-class classification

Loss
functions

Some Trivia: The Fall of Perceptrons

• In 1969, Marvin Minsky and Seymour Papert released a book,
Perceptrons, demonstrating that perceptrons are not able to learn the
XOR function

• Many earlier researchers heavily focused on logical reasoning, a
feature of high-level human cognition, so a machine’s ability for
logical reasoning was thought to indicate “artificial intelligence”

• Part of a funding battle: Minksy and Papert wanted federal AI funding
to go to their kind of ‘symbolic’ AI, not the early neural net folks...

38

