

Today's goal - Continue discussion on perceptron and learn about the loss functions

(1) Perceptron learning algorithm
(2) Extending perceptron for Multi-class classification
(3) Loss functions for

- Regression
- Classification

Recap: A Binary Perceptron for MNIST

- Inputs $\left[x_{1}, x_{2}, \ldots x_{n}\right]$ are all positive
- $n=784$ (28×28 pixel values)
- output is either 0 or 1
- $0 \rightarrow$ input is not the digit type we're looking for
- $1 \rightarrow$ input is the digit type we're looking for

Training a perceptron

N is known as the number of epochs, where each epoch is an iteration of going through all data points in the training set
 Target: \mathbb{Y}

As a general rule of thumb, N grows with the number of parameters
aining Labels
0 . set the parameters $\Phi=\{w \cup b\}$ to 0

1. Iterate over training set several times,
feeding in each training example into the model, producing an output, and adjusting the parameters according to whether that output was right or wrong
2. Stop once we either
(a) get every training example right or
(b) after N iterations, a number set by the programmer.

The Perceptron Learning Algorithm

1. set w 's to 0 .

2. for N iterations, or until the weights do not change:

a) for each training example x^{k} with label y^{k}
i. if $y^{k}-f\left(\mathrm{x}^{k}\right)=0$ continue
ii. else for all weights $w_{i}, \Delta w_{i}=\left(y^{k}-f\left(\mathbf{x}^{k}\right)\right) x_{i}^{k}$

- $b=$ bias
- $w=$ weights
- $N=$ maximum number of training iterations
- $\mathbf{x}^{k}=\mathrm{k}^{\text {th }}$ training example
- $y^{k}=$ label for the $\mathrm{k}^{\text {th }}$ example
- $w_{i}=$ weight for the $\mathrm{i}^{\text {th }}$ input where $i \leq n$
- $n=$ number of pixels per image
- $x_{i}^{k}=\mathrm{i}^{\text {th }}$ input of the example where $i \leq n$

The Perceptron Learning Algorithm

1. set w 's to 0 .

2. for N iterations, or until the weights do not change:
a) for each training example x^{k} with label y^{k}
i. if $y^{k}-f\left(\mathrm{x}^{k}\right)=0$ continue
ii. else for all weights $w_{i}, \Delta w_{i}=\left(y^{k}-f\left(\mathbf{x}^{k}\right)\right) x_{i}^{k}$

- If the output of our model matches the label, we continue
- If the correct label is 1 , and our output is $1,1-1=0$
- If the correct label is 0 , and our output is $0,0-0=0$

The Perceptron Learning Algorithm

1. set w 's to 0 .

2. for N iterations, or until the weights do not change:
a) for each training example x^{k} with label y^{k}
i. if $y^{k}-f\left(\mathrm{x}^{k}\right)=0$ continue
ii. else for all weights $w_{i}, \Delta w_{i}=\left(y^{k}-f\left(\mathrm{x}^{k}\right)\right) x_{i}^{k}$

- If our label y^{k} is a 1 , and our model's output is a 0 , we update the $i^{\text {th }}$ weight by:
- $(1-0) \cdot x_{i}^{k}=x_{i}^{k}$
- Output was 0 and should have been 1 , so make the output more positive
- If our label y^{k} is a 0 , and our model's output is a 1 , we update the $i^{\text {th }}$ weight by:
- $(0-1) \cdot x_{i}^{k}=-x_{i}^{k}$
- Output was 1 and should have been 0 , so make the output more negative

Example: Predict whether a digit is a " 2 "

Predict whether a digit is a " 2 "

Just look at the effect of these two pixels

$$
\begin{aligned}
& x_{1}=0.8 \\
& x_{2}=0
\end{aligned}
$$

Predict whether a digit is a " 2 "

- Start off training with all parameters as 0 , so $w_{1}=$ $0, w_{2}=0$, and $b=0$
- $f(x)=\left(w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+b .1\right)$
- $f(x)=(0 \cdot 0.8+0 \cdot 0+0 \cdot 1)=0$
- Return 0 because value is not greater than 0
- Predict that it is not a 2 !
- Correct answer: it is a 2 ...
- Parameter update:
- $\Delta w_{1}=(1-0) \cdot 0.8=0.8$
- $\Delta w_{2}=(1-0) \cdot 0=0$
- $\Delta b=(1-0) \cdot 1=1$
- Now
- $w_{1}=0.8$
- $w_{2}=0$
- $b=1$

True label $=1$

$$
\begin{aligned}
& x_{1}=0.8 \\
& x_{2}=0
\end{aligned}
$$

Predict whether a digit is a " 2 "

- Next example:

Predict whether a digit is a " 2 "

- At end of last iteration:
- $w_{1}=0.8, w_{2}=0$, and $b=1$
- $f(x)=\left(w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+b .1\right)$
- $f(x)=(0.8 \cdot 0.9+0 \cdot 0.9+1 \cdot 1)>0$
- Return 1 because value is greater than 0
- Predict that it is a 2 !
- Correct answer: it is not a 2 ...
- Parameter update:
- $\Delta w_{1}=(0-1) \cdot 0.9=-0.9$
- $\Delta w_{2}=(0-1) \cdot 0.9=-0.9$
- $\Delta b=(0-1) \cdot 1=-1$
- Now
- $w_{1}=0.8-0.9=-0.1$
- $w_{2}=0-0.9=-0.9$
- $b=1-1=0$

Multi-class problem

Bringing back the complexity

Input: X

Classifying MNIST digits requires predicting 1 of 10 possible values

Target: \mathbb{Y}

Pixel Grid

28×28 pixels

${ }^{0}$

Rather than predicting whether a handwritten digit is of a certain class, we predict the class it is most likely in

Which digit is it?

Function: $f \quad y^{(1)}=" 2$ "
$\mathrm{f}(\mathbb{X}) \rightarrow \mathbb{Y}$
How do we do that?
$y^{(2)}=" 0 "$

Using multiple perceptrons

- We can extend perceptrons to multi-class problems by creating m perceptrons, where $m=$ the number of classes
- For MNIST, we would have 10 perceptrons
- Each individual perceptron returns a value, so our model will return the class whose perceptron value is the highest.
- Here, "perceptron value" refers to the value of the weighted sum before being thresholded.

Using multiple perceptrons

Perceptron for predicting whether handwritten digit is a 0

Perceptron for predicting whether handwritten digit is a 9

Multi-class Perceptron

Three separate perceptrons

Is there anything the Perceptron can't learn?

AND Function

\section*{$A \longrightarrow A N D$
 | A | B | Out |
| :---: | :---: | :---: |
| 0 | 0 | 0 |}

AND Function

Perceptrons work well with linearly separable data

AND Gate

- Output $=0$

Output = 1

Linear decision
boundary

OR Function

OR Function

XOR Function

Need two linear decision boundaries to represent this function...

Multi-Layered Neural Net

May see the term
Multi-Layer
Perceptron (MLP),
HOWEVER
"perceptrons" are
not perceptrons in
the strictest possible
sense

We really don't use
the threshold
function of a
perceptron but still
use the linear
function

A Multi-Layered Neural Net

Any questions?
??

How do we train multi-layer networks?

- Unfortunately, the perceptron algorithm doesn't generalize beyond the one-layer case...
- We need a new algorithm...

1. set w 's to 0 .
2. for N iterations, or until the weights do not change:
a) for each training example \mathbf{x}^{k} with label a^{k}
i. if $a^{k}-f\left(\mathbf{x}^{k}\right)=0$ continue
ii. else for all weights $w_{i}, \Delta w_{i}=\left(a^{k}-f\left(\mathbf{x}^{k}\right)\right) x_{i}$

A critical ingredient for our new approach: Loss functions

A critical ingredient for our new approach: Loss functions

What is a Loss Function?

- A function L which measures how "wrong" a network is
- L is computed by comparing two values (predicted and true) that shows which is better
- Evaluate L and update parameters to decrease L, making the network "less wrong"

Recap - regression task

Recap: Learning function f

Mean Squared Error (MSE)

Average squared residual (residual: difference between predicted and true value)
Decreasing the MSE = the model has less error = data points fall closer to the regression line
$M S E=\frac{\sum_{k=1}^{n}\left(y^{k}-\hat{y}^{k}\right)^{2}}{n}$
y^{k} : true output value
\hat{y}^{k} : predicted output value
n : number of samples

What could be the purpose of squaring the distance?

MSE is the average squared distance between the observed and predicted values

Mean Squared Error (MSE)

Average squared residual (residual: difference between predicted and true value)
Decreasing the MSE = the model has less error = data points fall closer to the regression line
$M S E=\frac{\sum_{k=1}^{n}\left(y^{k}-\hat{y}^{k}\right)^{2}}{n}$
y^{k} : true output value
\hat{y}^{k} : predicted output value n : number of samples purpose of squaring the distance?

Recap: Binary classification

 Input: \mathbb{X}What is a good loss for our binary classification?

Target: \mathbb{Y}

Is it digit 2?
$y^{(1)}=" 1 "$

1. Make the network output a probability for class 1
(a value between 0 and 1)

0

Cross Entropy Loss (for Binary classification)

```
y= true label of class (0 or 1)
p = predicted probability of class 1
```

```
When the true label is 1 we want higher predicted probability for a digit to be 2
```

When the true label is 0 we want lower predicted probability for a digit to be 2

Some examples:
$\log (0.9)=-0.04$
$\log (0.5)=-0.3$
$\log (0.001)=-3$

Cross Entropy Loss (for Binary classification)

```
y= true label of class (0 or 1)
p = predicted probability of class 1
```

$-\log (p)$

Some examples:


```
log(0.9) = -0.04
log(0.5) = -0.3
log}(0.001)=-
```


Cross Entropy Loss (for Binary classification)

```
y= true label of class (0 or 1)
p= predicted probability of class 1
```

$-(\mathrm{y} \log (p))$

$$
\begin{aligned}
& \text { Some examples: } \\
& \log (0.9)=-0.04 \\
& \log (0.5)=-0.3 \\
& \log (0.001)=-3
\end{aligned}
$$

Cross Entropy Loss (for Binary classification)

```
y= true label of class (0 or 1)
p= predicted probability of class 1
```

$$
y=1, p=0.9
$$

$-(y \log (p)+(1-y) \log (1-p))$

$$
y=0, p=0.9
$$

$$
y=1, p=0.001
$$

Some examples:
$\log (0.9)=-0.04$
$\log (0.5)=-0.3$
$\log (0.001)=-3$
Any questions?

Recap: Multi-class classification

Input: X

Target: \mathbb{Y}

28×28 pixels

We want our network to produce the right answer with high probability
 Which digit is it?
 Function: f
 $y^{(1)}=" 2 "$

1. Make the network output probabilities for all classes (values between 0 and 1)

$x^{(2)}=$

$y^{(2)}=" 0 "$

Cross Entropy Loss (for Multi-class classification)

\mathbf{p}	Classes (m)	\mathbf{y}
0.3	$" 0 "$	0
0.2	$" 1 "$	0
0.5	$" 2 "$	1

Some examples:
$\log (0.9)=-0.04$
$\log (0.5)=-0.3$
$\log (0.001)=-3$

We want model to assign high probability to the true class and low to others

Some Trivia: The Fall of Perceptrons

- In 1969, Marvin Minsky and Seymour Papert released a book, Perceptrons, demonstrating that perceptrons are not able to learn the XOR function
- Many earlier researchers heavily focused on logical reasoning, a feature of high-level human cognition, so a machine's ability for logical reasoning was thought to indicate "artificial intelligence"
- Part of a funding battle: Minksy and Papert wanted federal Al funding to go to their kind of 'symbolic' AI, not the early neural net folks...

