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Perceptron cond. and Loss Functions

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Lab1, Homework 1 and 
Quiz 1 out today!



Today’s goal – Continue discussion on 
perceptron and learn about the loss functions

(1) Perceptron learning algorithm

(2) Extending perceptron for Multi-class classification 

(3) Loss functions for
- Regression
- Classification



Recap: A Binary Perceptron for MNIST

• Inputs 𝑥!, 𝑥", … 𝑥# are all positive
• 𝑛 = 784 (28×28 pixel values)

• output is either 0 or 1
• 0 à input is not the digit type 

we’re looking for
• 1 à input is the digit type we’re 

looking for
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Training Data Training Labels

f (“model”)

Loss function

Optimizer

Output

Error

Training a perceptron

Input: 𝕏 Target: 𝕐

0.  set the parameters Φ = 𝑤⋃𝑏  to 0

1. Iterate over training set several 
times,
feeding in each training example 
into the model, 
producing an output, 
and adjusting the parameters 
according to whether that output 
was right or wrong

2.  Stop once we either 
(a) get every training 
example right or 
(b) after 𝑁 iterations, a 
number set by the 
programmer.

𝑁 is known as the number of epochs, where each epoch is an 
iteration of going through all data points in the training set

As a general rule of thumb, 𝑁 grows with the number of 
parameters



The Perceptron Learning Algorithm

1. set 𝑤’s to 0.
2. for𝑁 iterations, or until the weights do not change:

a) for each training example x* with label 𝑦*

i. if 𝑦* − 𝑓 x* = 0 continue

ii. else for all weights𝑤+, ∆𝑤+ = 𝑦* − 𝑓 𝐱* 𝑥+*
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• 𝑏 = bias
• 𝑤 = weights
• 𝑁	 = maximum	number	of	training	iterations

• x( = k)*	training	example

• 𝑦( = label	for	the	k)*example
• 𝑤+ = weight	for	the	i)*	input	where	𝑖 ≤ 𝑛
• 𝑛 = number	of	pixels	per	image
• 𝑥+( = i)*	input	 of	the	example	where		𝑖 ≤ 𝑛



The Perceptron Learning Algorithm

1. set 𝑤’s to 0.
2. for𝑁 iterations, or until the weights do not change: 

a) for each training example x* with label 𝑦*

i. if 𝒚𝒌 − 𝒇 x𝒌 = 𝟎 continue

ii. else for all weights𝑤+, ∆𝑤+ = 𝑦* − 𝑓 𝐱* 𝑥+*

6

• If the output of our model matches the label, we continue
• If the correct label is 1, and our output is 1, 1 − 1 = 0
• If the correct label is 0, and our output is 0, 0 − 0 = 0



The Perceptron Learning Algorithm

1. set 𝑤’s to 0.
2. for𝑁 iterations, or until the weights do not change: 

a) for each training example x* with label 𝑦*

i. if 𝑦* − 𝑓 x* = 0 continue

ii. else for all weights𝒘𝒊, ∆𝒘𝒊 = 𝒚𝒌 − 𝒇 𝐱𝒌 𝒙𝒊𝒌
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• If our label 𝑦! is a 1, and our model’s output is a 0, we update the 𝑖"# weight by:
• 1 − 0 $ 𝑥!" = 𝑥!" 
• Output was 0 and should have been 1, so make the output more positive

• If our label 𝑦! is a 0, and our model’s output is a 1, we update the 𝑖"# weight by:
• 0 − 1 $ 𝑥!" = −𝑥!"  

• Output was 1 and should have been 0, so make the output more negative



Example: Predict whether a digit 
is a “2”
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Predict whether a digit is a “2”
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𝑥! = 0.8
𝑥" = 0

𝑥!

𝑥"

Just look at the effect of these two pixels



Predict whether a digit is a “2”
• Start off training with all parameters as 0, so 𝑤! =0, 𝑤" = 0, and 𝑏 = 0
• 𝑓 𝑥 = (𝑤! I 𝑥! + 𝑤" I 𝑥" + 𝑏. 1)
• 𝑓 𝑥 = 0 I 0.8 + 0 I 0 + 0 I 1 = 0

• Return 0 because value is not greater than 0

• Predict that it is not a 2!
• Correct answer: it is a 2...
• Parameter update: 

• ∆𝑤" = 1 − 0 * 0.8 = 0.8
• ∆𝑤# = 1 − 0 * 0 = 0
• ∆𝑏 = 1 − 0 * 1 = 1

• Now
• 𝑤" = 0.8
• 𝑤# = 0
• 𝑏 = 1
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True label = 1



Predict whether a digit is a “2”

• Next example:
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𝑥"

𝑥!

𝑥! = 0.9
𝑥" = 0.9

𝑤! = 0.8
𝑤" = 0
𝑏 = 1

Remember the starting 
weights are now:



Predict whether a digit is a “2”
• At end of last iteration:

• 𝑤! = 0.8,	𝑤" = 0, and 𝑏 = 1

• 𝑓 𝑥 = (𝑤" * 𝑥" + 𝑤# * 𝑥# + 𝑏. 1)

• 𝑓 𝑥 = (0.8 * 0.9 + 0 * 0.9 + 1 * 1) > 0
• Return 1 because value is greater than 0

• Predict that it is a 2!
• Correct answer: it is not a 2...
• Parameter update: 

• ∆𝑤! = 0 − 1 7 0.9 = −0.9
• ∆𝑤" = 0 − 1 7 0.9 = −0.9
• ∆𝑏 = 0 − 1 7 1 = −1

• Now
• 𝑤! = 0.8 − 0.9 = −0.1
• 𝑤" = 0 − 0.9 = −0.9
• 𝑏 = 1 − 1 = 0
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𝑥!

𝑥! = 0.9
𝑥" = 0.9

True label = 0

Any questions?



Multi-class problem
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Input: 𝕏 Target: 𝕐

Function: f

Pixel Grid Which digit is it?

Bringing back the complexity

28x28 pixels

Classifying MNIST digits requires 
predicting 1 of 10 possible values

𝑥(!) =

𝑥(") =

𝑦(!) = “2”

𝑦(") = “0”

f(𝕏)à 𝕐

Rather than predicting 
whether a handwritten digit 
is of a certain class, we 
predict the class it is most 
likely in

How do we do that?



Using multiple perceptrons

• We can extend perceptrons to multi-class problems by creating 𝑚 perceptrons, 
where m= the number of classes

• For MNIST, we would have 10 perceptrons

• Each individual perceptron returns a value, so our model will return the class 
whose perceptron value is the highest.
• Here, “perceptron value” refers to the value of the weighted sum before being 

thresholded.
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Using multiple perceptrons

Perceptron for predicting 
whether handwritten digit is a 0

Perceptron for predicting 
whether handwritten digit is a 9
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Multi-class Perceptron

Three separate perceptrons Three perceptrons sharing inputs
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Is there anything the Perceptron can’t learn?



AND Function
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Output = 1
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𝑤5 ⋅ 𝑥5 + 𝑤6 ⋅ 𝑥6 + 𝑏 > 0	?

Linear decision 
boundary

Perceptrons work well with 
linearly separable data



OR Function
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XOR Function
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Output = 1

Output = 0

𝑤5 ⋅ 𝑥5 + 𝑤6 ⋅ 𝑥6 + 𝑏 > 0	?

𝑤5 ⋅ 𝑥5 + 𝑤6 ⋅ 𝑥6 + 𝑏 > 0	?

Need two linear decision boundaries to represent this function...

Complicated data would need a complicated function!



Multi-Layered Neural Net
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A Multi-Layered Neural Net

Any questions?

May see the term 
Multi-Layer 
Perceptron (MLP), 
HOWEVER 
"perceptrons" are 
not perceptrons in 
the strictest possible 
sense

We really don’t use 
the threshold 
function of a 
perceptron but still 
use the linear 
function



How do we train multi-layer networks?

• Unfortunately, the perceptron algorithm doesn’t generalize beyond 
the one-layer case... L

• We need a new algorithm...
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A one-layer binary 
perceptron
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1. set 𝑤’s to 0.

2. for	𝑁	iterations, or until the weights do not change: 
a) for each training example x(  with label 𝑎(

i. if 𝑎( − 𝑓 x( = 0 continue

ii. else for all weights	𝑤+ , ∆𝑤+ = 𝑎( − 𝑓 x( 𝑥+



A critical ingredient for our new approach: 
Loss functions
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A critical ingredient for our new approach: 
Loss functions
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What is a Loss Function?

• A function 𝐿 which measures how “wrong” a network is

• 𝐿 is computed by comparing two values (predicted and true) that 
shows which is better

• Evaluate 𝐿 and update parameters to decrease 𝐿, making the network 
“less wrong”
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Recap – regression task
Input: 𝕏 Target: 𝕐

“Profit made on selling 
lemonade”“Temperature”

𝕏	 ∈  ℝ	

𝕐 ∈  ℝ	
(Numerical output)

Regression

100.1 

30.3 

60.0 

200.0

145.1

160.5

𝑥(!) =

𝑥(") =

𝑥(W) =

𝑦(!) =

𝑦(") =

𝑦(W) =

Function: f

f(X)àY

(Image	only	for	explaining	concept,	not	drawn	accurately)



Recap: Learning function f
Input: 𝕏 Target: 𝕐

“Profit made on selling 
lemonade”“Temperature”

𝕏	 ∈  ℝ	

𝕐 ∈  ℝ	
(Numerical output)

100.1 

30.3 

60.0 

200.0

145.1

160.5

𝑥(!) =

𝑥(") =

𝑥(W) =

𝑦(!) =

𝑦(") =

𝑦(W) =

Function: f

f(X)àY
𝑥(!)

Linear function 
y = 𝑤𝑥 + 𝑏

Temperature (𝕏)

Pr
of

it 
(𝕐

)

𝑦 = 2𝑥

(Image	only	for	explaining	concept,	not	drawn	accurately)

(𝑥(!), 𝑦(!))

(𝑥("), 𝑦("))

What could be our loss 
function?



Mean Squared Error (MSE)

Courtesy: https://statisticsbyjim.com/regression/mean-squared-error-mse/

Average squared residual (residual: difference between predicted and true value)

Decreasing the MSE = the model has less error = data points fall closer to the regression line

𝑀𝑆𝐸 =
∑(;!< (	𝑦( 	− 	 _𝑦()"

𝑛
MSE is the average squared 
distance between the observed 
and predicted values

What could be the 
purpose of squaring the 

distance?

𝑦(	: 	𝑡𝑟𝑢𝑒	𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒

_𝑦(: 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒

𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠



Mean Squared Error (MSE)

Courtesy: https://statisticsbyjim.com/regression/mean-squared-error-mse/

Average squared residual (residual: difference between predicted and true value)

Decreasing the MSE = the model has less error = data points fall closer to the regression line

𝑀𝑆𝐸 =
∑(;!< (	𝑦( 	− 	 _𝑦()"

𝑛

What could be the 
purpose of squaring the 

distance?

𝑦(	: 	𝑡𝑟𝑢𝑒	𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒

_𝑦(: 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒

𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠



Input: 𝕏 Target: 𝕐

Function: f

Pixel Grid Is it digit 2?

Recap: Binary classification

28x28 pixels

𝑥(!) =

𝑥(") =

𝑦(!) = “1”

𝑦(") = “0”

What is a good loss for 
our binary classification?

We want our network to 
produce the right answer 

with high probability

1. Make the network output a 
probability for class 1
(a value between 0 and 1)

2. Use this probability to compute a loss



Cross Entropy Loss (for Binary classification)

𝑦 = 𝑡𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠 0	𝑜𝑟	1
𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠	1

log	(𝑝)

log 0.9 = −0.04

log 0.001 = −3

Some examples:

log 0.5 = 	−0.3

When the true label is 1 
we want higher predicted  
probability for a digit to 

be 2

When the true label is 0 
we want lower predicted  
probability for a digit to 

be 2



Cross Entropy Loss (for Binary classification)

𝑦 = 𝑡𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠 0	𝑜𝑟	1
𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠	1

−log	(𝑝)

log 0.9 = −0.04

log 0.001 = −3

Some examples:

log 0.5 = 	−0.3



Cross Entropy Loss (for Binary classification)

𝑦 = 𝑡𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠 0	𝑜𝑟	1
𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠	1

−(y	log	(𝑝))

log 0.9 = −0.04

log 0.001 = −3

Some examples:

log 0.5 = 	−0.3



Cross Entropy Loss (for Binary classification)

𝑦 = 𝑡𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠 0	𝑜𝑟	1
𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠	1

−(y	log 𝑝 + (1 − 𝑦)	log(1 − 𝑝))

log 0.9 = −0.04

log 0.001 = −3

Some examples:

log 0.5 = 	−0.3

y = 1, p = 0.9

y = 0, p = 0.9

y = 1, p = 0.001

y = 0, p = 0.001We get this 
probability by using 
a Sigmoid function

Any questions?



Input: 𝕏 Target: 𝕐

Function: f

Pixel Grid Which digit is it?

Recap: Multi-class classification

28x28 pixels

𝑥(!) =

𝑥(") =

𝑦(!) = “2”

𝑦(") = “0”

We want our network to 
produce the right answer 

with high probability

1. Make the network output 
probabilities for all classes
(values between 0 and 1)

2. Use these probabilities to compute a loss



Cross Entropy Loss (for Multi-class classification)

Classes
(m)

“0”

“1”

“2”

y

0

0

1

We want model to assign 
high probability to the 
true class and low to 

others log 0.9 = −0.04

log 0.001 = −3

Some examples:

log 0.5 = 	−0.3

−m
=;!

>

𝑦= 	log(𝑝=) p

0.3

0.2

0.5



Recap Perceptron training w/ working 
example

Multi-class classification

When perceptron 
fails

Perceptron
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𝑏

MSE loss for regression

Cross entropy loss for binary 
classification

Cross entropy loss for 
multi-class classification 

Loss 
functions



Some Trivia: The Fall of Perceptrons

• In 1969, Marvin Minsky and Seymour Papert released a book, 
Perceptrons, demonstrating that perceptrons are not able to learn the 
XOR function

• Many earlier researchers heavily focused on logical reasoning, a 
feature of high-level human cognition, so a machine’s ability for 
logical reasoning was thought to indicate “artificial intelligence”

• Part of a funding battle: Minksy and Papert wanted federal AI funding 
to go to their kind of ‘symbolic’ AI, not the early neural net folks...
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