

Recap: A critical ingredient for our new approach: Loss functions

A function L which measures how "wrong" a network is

Mean Squared Error (MSE)

Average squared residual (residual: difference between predicted and true value)
Decreasing the MSE = the model has less error = data points fall closer to the regression line
$M S E=\frac{\sum_{k=1}^{n}\left(y^{k}-\hat{y}^{k}\right)^{2}}{n}$
y^{k} : true output value
\hat{y}^{k} : predicted output value
n : number of samples

Cross Entropy Loss (for Binary classification)

```
y= true label of class (0 or 1)
p=predicted probability of class 1
```

$$
y=1, p=0.9
$$

$-(y \log (p)+(1-y) \log (1-p))$

$$
y=0, p=0.9
$$

$$
y=1, p=0.001
$$

Some examples:
$\log (0.9)=-0.04$
$\log (0.5)=-0.3$
$\log (0.001)=-3$

We get this probability by using a Sigmoid function

Cross Entropy Loss (for Multi-class classification)

p	Classes (m)	\mathbf{y}
0.3	$" 0 "$	0
0.2	$" 1 "$	0

0.5
"2"
1

Some examples:
$\log (0.9)=-0.04$
$\log (0.5)=-0.3$
$\log (0.001)=-3$
We can get these probabilities by using a Softmax
function

Next critical ingredient for our new approach: Optimizer

Today's goal - learn about the optimizer

(1) What does it mean to optimize?
(2) Gradient descent for linear regression
(3) Start building a neural network
(4) Calculating gradients for composite functions (Chain rule)

What does it mean to optimize?

"Optimization" comes from the same root as "optimal", which means best. When you optimize something, you are "making it best".

```
For our case, we want to minimize the loss function to get the "best" model!
```


What does it mean to optimize?

Gradient (measuring the change)

Calculating partial derivative of the Loss with respect to the weights/parameters

Vector Calculus Recap

- Partial derivative: the derivative of a multivariable function with respect to one of its variables

Vector Calculus Recap

- Partial derivative: the derivative of a multivariable function with respect to one of its variables
- Example: $f(x, w, b)=w x+b$
- The partial derivative of f with respect to w is $\frac{\partial f}{\partial w}$

Vector Calculus Recap

- Partial derivative: the derivative of a multivariable function with respect to one of its variables
- Example: $f(x, w, b)=w x+b$
- The partial derivative of f with respect to w is $\frac{\partial f}{\partial w}$
- How to compute? -- treat all other variables as constants and differentiate

$$
\frac{\partial f}{\partial w}=
$$

Vector Calculus Recap

- Partial derivative: the derivative of a multivariable function with respect to one of its variables
- Example: $f(x, w, b)=w x+b$
- The partial derivative of f with respect to w is $\frac{\partial f}{\partial w}$
- How to compute? -- treat all other variables as constants and differentiate

$$
\frac{\partial f}{\partial w}=\frac{\partial}{\partial w}(w x+\mathrm{b})=\frac{\partial}{\partial w}(w x)+\frac{\partial}{\partial w}(b)=x+0=x
$$

Gradient Descent

$$
\Delta w=-\alpha \cdot \frac{\partial L}{\partial w}
$$

Slope

Impact of Learning Rate

$$
\Delta w=-\alpha \cdot \frac{\partial L}{\partial w}
$$

Learning rate too small?
Slow Convergence

$$
\alpha=10^{-8}
$$

Learning rate too big?
Instability ("overshooting")

$$
\alpha=10^{-1}
$$

Recap: Mean Squared Error (MSE)

Average squared residual (residual: difference between predicted and true value)
Decreasing the MSE = the model has less error = data points fall closer to the regression line
$M S E=\frac{\sum_{k=1}^{n}\left(y^{k}-\hat{y}^{k}\right)^{2}}{n}$
y^{k} : true output value
\hat{y}^{k} : predicted output value
n : number of samples

What could be the purpose of squaring the distance?

Gradient Descent of MSE (1 sample)

$$
\Delta w=-\alpha \cdot \frac{\partial L}{\partial w}
$$

$$
\begin{aligned}
& L=\left(\begin{array}{ll}
y & -\hat{y}
\end{array}\right)^{2} \\
& =\left(\begin{array}{ll}
y & -f(x))^{2} \\
=y^{2}+f(x)^{2}-2 y f(x) \\
=y^{2}+(w x+b)^{2}-2 y(w x+b)
\end{array}\right.
\end{aligned}
$$

$$
=y^{2}+w^{2} x^{2}+b^{2}+2 w x b-2 y w x-2 y b
$$

$\frac{\partial L}{\partial w}=$?

$$
\begin{aligned}
& \frac{\partial L}{\partial w}=2 w x^{2}+2 x b-2 y x \quad \text { Any questions? } \\
& \frac{\partial L}{\partial w}=2 x(w x+b-y)
\end{aligned}
$$

Convex functions

Figure: https://fmin.xyz/docs/theory/Convex_function/

Convex and Non convex functions

Figure: https://fmin.xyz/docs/theory/Convex_function/

Why we care about non-convex functions?

A Multi-Layered Neural Net

Let's start building our neural network model

- This is a simplified view of our model with an input and a linear layer

Our Weight Matrix

- We have an input vector of size n and an output vector of size m, so our weights matrix \mathbf{W} is of dimensionality $m \times n$
- $w_{j, i}$ is the $j^{\text {th }}$ row and the $i^{\text {th }}$ column of our matrix, or the weight multiplied by the $i^{\text {th }}$ index of the input which is used to create the $j^{\text {th }}$ index in the output

Our Weight Matrix [Example]

$$
x=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]
$$

Adding MSE Loss to Our Network

j=1

$$
l_{j}=\sum_{k} w_{j, k} x_{k}+b_{j}
$$

$$
l=\boldsymbol{w} \cdot \boldsymbol{x}+\boldsymbol{b}
$$

X

Looking at composite function!

Using gradient descent to update parameters

- Recall the parameter update for Gradient Descent: $\Delta w=-\alpha \cdot \frac{\partial L}{\partial w}$
- L is a composition of a series of functions (linear layers, loss layer, maybe more...)
- How do we compute the derivative of a composition of functions?
- Hint: think back to your calculus classes...

Chain rule

If f and g are both differentiable and $F(x)$ is the composite function defined by $F(x)=f(g(x))$ then F is differentiable and F^{\prime} is given by the product

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Applying Chain rule [Example]

$$
\begin{gathered}
f(x)=x^{2} \quad g(x)=\left(2 x^{2}+1\right) \\
F(x)=f(g(x)) \\
F(x)=\left(2 x^{2}+1\right)^{2}
\end{gathered}
$$

The Chain Rule (for Differentiation)

- Given arbitrary function: $f(g(x)) \Rightarrow \frac{d f}{d x}=\frac{d f}{d g} \cdot \frac{d g}{d x}$

The Chain Rule in Our Network

- Here's our function: $L(l(w)) \Rightarrow \frac{d L}{d w}=\frac{d L}{d l} \cdot \frac{d l}{d w}$

Derivative of loss layer

- $\frac{d L}{d l}=\frac{d(y-l)^{2}}{d l}$

Derivative of linear layer

- $\frac{d l}{d w}=\frac{d(w x+b)}{d w}$

Putting it all together

- $\frac{d L}{d w}=\frac{d L}{d l} \cdot \frac{d l}{d w}=$

Putting it all together

- $\frac{d L}{d w}=\frac{d L}{d l} \cdot \frac{d l}{d w}=-2(\mathrm{y}-\mathrm{l}) \cdot \mathrm{x}=-2 \mathrm{x}(\mathrm{y}-\mathrm{wx}-\mathrm{b})=2 \mathrm{x}(\mathrm{wx}+\mathrm{b}-\mathrm{y})$

Gradient Descent of MSE (1 sample)

$$
\Delta w=-\alpha \cdot \frac{\partial L}{\partial w}
$$

$L=\left(\begin{array}{ll}y & -\hat{y}\end{array}\right)^{2}$
$=\left(\begin{array}{ll}y & -f(x)\end{array}\right)^{2}$
$=y^{2}+f(x)^{2}-2 y f(x)$
$=y^{2}+(w x+b)^{2}-2 y(w x+b)$
$=y^{2}+(w x+b)^{2}-2 y(w x+b)$
$=y^{2}+(w x+b)^{2}-2 y(w x+b)$
$=y^{2}+w^{2} x^{2}+b^{2}+2 w x b-2 y w x-2 y b$

$$
\frac{\partial L}{\partial w}=2 w x^{2}+2 x b-2 y x
$$

$$
\frac{\partial L}{\partial w}=2 x(w x+b-y)
$$

Adding more layers!

- $f(h(g(x))) \Rightarrow \frac{d f}{d x}=\frac{d f}{d h} \cdot \frac{d h}{d g} \cdot \frac{d g}{d x}$

Few more important points: Backpropagation

- The process of calculating gradients of functions via chain rule in a neural network
- Is a part of and NOT the whole learning algorithm
- Can be calculated with respect to any variable of choice
- For learning in neural networks we calculate gradients with respect to the weights

Building a neural network

Simple model with linear layer

Adding loss layer (regression)

Chain rule to calculate gradients
(Backpropagation)

