CSCI 1470/2470 Spring 2022

Ritambhara Singh

February 02, 2024 Wednesday

Optimization and Backpropagation

Deep Learning

ChatGPT prompt "minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner"

Recap: A critical ingredient for our new approach: Loss functions

A function *L* which measures how "wrong" a network is

Mean Squared Error (MSE)

Average squared residual (residual: difference between predicted and true value)

Decreasing the MSE = the model has less error = data points fall closer to the regression line

$$MSE = \frac{\sum_{k=1}^{n} (y^{k} - \hat{y}^{k})^{2}}{n}$$

y^k: true output value ŷ^k: predicted output value n:number of samples

Cross Entropy Loss (for Binary classification)

y = true label of class (0 or 1) p = predicted probability of class 1

y = 1, p = 0.9

 $-(y \log (p) + (1 - y) \log(1 - p))$

y = 0, p = 0.9

y = 1, p = 0.001

Some examples:

 $\log(0.9) = -0.04$

 $\log(0.5) = -0.3$

 $\log(0.001) = -3$

We get this probability by using a Sigmoid function y = 0, p = 0.001

Cross Entropy Loss (for Multi-class classification)

$$-\sum_{j=1}^m y_j \log(p_j)$$

Some examples:

 $\log(0.9) = -0.04$

 $\log(0.5) = -0.3$

 $\log(0.001) = -3$

We can get these probabilities by using a Softmax function

Next critical ingredient for our new approach: **Optimizer**

Today's goal – learn about the optimizer

(1) What does it mean to optimize?

(2) Gradient descent for linear regression

(3) Start building a neural network

(4) Calculating gradients for composite functions (Chain rule)

What does it mean to optimize?

"Optimization" comes from the same root as "optimal", which means *best*. When you optimize something, you are "making it best".

For our case, we want to minimize the loss function to get the "best" model!

What does it mean to optimize?

Gradient (measuring the change)

Calculating partial derivative of the Loss with respect to the weights/parameters

• Partial derivative: the derivative of a multivariable function with respect to one of its variables

- Partial derivative: the derivative of a multivariable function with respect to one of its variables
- Example: f(x, w, b) = wx + b
- The partial derivative of f with respect to w is $\frac{\partial f}{\partial w}$

- Partial derivative: the derivative of a multivariable function with respect to one of its variables
- Example: f(x, w, b) = wx + b
- The partial derivative of f with respect to w is $\frac{\partial f}{\partial w}$
- How to compute? -- treat all other variables as constants and differentiate

$$\frac{\partial f}{\partial w} =$$

- Partial derivative: the derivative of a multivariable function with respect to one of its variables
- Example: f(x, w, b) = wx + b
- The partial derivative of f with respect to w is $\frac{\partial f}{\partial w}$
- How to compute? -- treat all other variables as constants and differentiate

$$\frac{\partial f}{\partial w} = \frac{\partial}{\partial w}(wx + b) = \frac{\partial}{\partial w}(wx) + \frac{\partial}{\partial w}(b) = x + 0 = x$$

Impact of Learning Rate

$$\Delta w = -\alpha \cdot \frac{\partial L}{\partial w}$$

Learning rate too small? **Slow Convergence**

Learning rate too big? Instability ("overshooting")

Recap: Mean Squared Error (MSE)

Average squared residual (residual: difference between predicted and true value)

Decreasing the MSE = the model has less error = data points fall closer to the regression line

$$MSE = \frac{\sum_{k=1}^{n} (y^{k} - \hat{y}^{k})^{2}}{n}$$

y^k: true output value ŷ^k: predicted output value n:number of samples

What could be the purpose of squaring the distance?

Convex functions

Figure: https://fmin.xyz/docs/theory/Convex_function/

Convex and Non convex functions

Figure: https://fmin.xyz/docs/theory/Convex_function/

Why we care about non-convex functions?

A Multi-Layered Neural Net

Let's start building our neural network model

• This is a simplified view of our model with an input and a linear layer

Our Weight Matrix

- We have an input vector of size n and an output vector of size m, so our weights matrix \mathbf{W} is of dimensionality $m \times n$
- $w_{j,i}$ is the j^{th} row and the i^{th} column of our matrix, or the weight multiplied by the i^{th} index of the input which is used to create the j^{th} index in the output

Our Weight Matrix [Example]

 $x = [x_1 \ x_2]$

Adding MSE Loss to Our Network

Looking at composite function!

Using gradient descent to update parameters

- Recall the parameter update for Gradient Descent: $\Delta w = -\alpha \cdot \frac{\partial L}{\partial w}$
- *L* is a composition of a series of functions (linear layers, loss layer, maybe more...)
- How do we compute the derivative of a composition of functions?
 - Hint: think back to your calculus classes...

Chain rule

If f and g are both differentiable and F(x) is the composite function defined by F(x) = f(g(x)) then F is differentiable and F' is given by the product

Applying Chain rule [Example]

$$f(x) = x^2$$
 $g(x) = (2x^2 + 1)$
 $F(x) = f(g(x))$

 $F(x) = (2x^2 + 1)^2$

The Chain Rule (for Differentiation)

• Given arbitrary function: $f(g(x)) \Rightarrow \frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

Each layer computes the gradients with respect to it's variables and passes the result backwards

Backpropagation (or backward pass)

The Chain Rule in Our Network

• Here's our function: $L(l(w)) \Rightarrow \frac{dL}{dw} = \frac{dL}{dl} \cdot \frac{dl}{dw}$

Remember – We calculate the gradient of L with respect to the parameters for learning them using gradient descent!

Derivative of loss layer

Derivative of linear layer

Putting it all together

Putting it all together

Have we seen this before?

Few more important points: Backpropagation

- The process of calculating gradients of functions via chain rule in a neural network
- Is a part of and **NOT the whole learning algorithm**
- Can be calculated with respect to any variable of choice
- For learning in neural networks we calculate gradients with respect to the weights

