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Gradient descent + Autodiff

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”



Recap: Forward Pass
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𝐱

linear layer

FC

softmaxinput

𝐿

loss

Softmax

Compute the prediction or evaluate the loss for a single input 𝒙.

Goal of learning: Minimize the total loss for all 𝒙 in training data.



Recap: Forward Pass

4

Compute the prediction or evaluate the loss for a single input 𝒙.

Goal of learning: Minimize the total loss for all 𝒙 in training data 
with respect to model parameters 𝑾,𝒃.

linear layer

FC

softmaxparameters

𝐿

loss

Softmax𝐖,𝐛



Recap: Backpropagation (Backward Pass)

5linear layer

FC

softmaxparameters

𝐿

loss

Softmax

Gradient descent: ∆𝑊 = −𝛼	∇,𝐿(𝑊) and ∆𝒃 = −𝛼	∇,𝐿(𝒃)

Backpropagation: Compute ∆𝑊 and ∆𝒃 via chain rule.
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Recap: Computation graph
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Local gradient

Parameter update:

Forward pass
Backward pass

https://slazebni.cs.illinois.edu/spring22/


Today’s goal – learn about deep learning 
frameworks

(1) Gradient Descent pseudocode

(2) Stochastic Gradient Descent (SGD)

(3) Automatic differentiation



Putting Everything Together: Gradient 
Descent

8

# delta_W is 2-D matrix of 0’s in the shape of W

for each input and corresponding answer a:

   probabilities = run_network(input)

   for j in range(len(probabilities)):

      y_j = 1 if j == a else 0

      for i in range(len(input):

         delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]

W += delta_W

Forward pass

Backward pass:
Compute $%

$&!"
 for every 𝑊'(

Over the entire dataset



Putting Everything Together: Gradient 
Descent

9

# delta_W is 2-D matrix of 0’s in the shape of W

for each input and corresponding answer a:

   probabilities = run_network(input)

   for j in range(len(probabilities)):

      y_j = 1 if j == a else 0

      for i in range(len(input):

         delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]

W += delta_W

Forward pass

Backward pass:
Compute $%

$&!"
 for every 𝑊'(

Over the entire dataset

Gradient descent update



Gradient Descent: Limitation?
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# delta_W is 2-D matrix of 0’s in the shape of W

for each input and corresponding answer a:

   probabilities = run_network(input)

   for j in range(len(probabilities)):

      y_j = 1 if j == a else 0

      for i in range(len(input):

         delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]

W += delta_W

We iterate over the entire dataset...

...to update the weights only once



Stochastic Gradient Descent (SGD)

• Alternative is to train on batches: small subsets of the training data
• Why stochastic: Each batch is randomly sampled from the full training 

data 
• We update the parameters after each batch

11



Stochastic Gradient Descent: Pseudocode
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   # delta_W is 2-D matrix of 0’s in the shape of W

   for each input and corresponding answer a                 :

      probabilities = run_network(input)

      for j in range(len(probabilities)):

         y_j = 1 if j == a else 0

         for i in range(len(input):

            delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]

   W += delta_W

for each batch:

in batch



Stochastic Gradient Descent: Pseudocode
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for each batch:

   # delta_W is 2-D matrix of 0’s in the shape of W

   for each input and corresponding answer a  in batch:

      probabilities = run_network(input)

      for j in range(len(probabilities)):

         y_j = 1 if j == a else 0

         for i in range(len(input):

            delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]

   W += delta_W Now we update weights after every batch



Stochastic Gradient Descent (SGD)

• Train on batches: small subsets of the training data
• We update the parameters after each batch
• This makes the training process stochastic or non-deterministic: -

*batches are a random subsample of the data
*do not provide the gradient that the entire dataset as a whole 
would provide at once

• Formally: the gradient of a randomly-sampled batch is an unbiased 
estimator of the gradient over the whole dataset
• “Unbiased”: expected value == the true gradient, but may have large variance 

(i.e. the gradient may ‘jitter around’ a lot)

14



What size should the batch be?

• Rule of thumb nowadays: Pick the largest batch size you can fit on your GPU!

15

Small batch size:
Fast, jittery updates

Large batch size:
Slower, stable updates

Epoch Epoch

Any questions?



Generalizing Backpropagation

16

linear layer

Σ

softmaxinput

𝐿𝜎

loss



Generalizing Backpropagation
• What if we want to add another layer to our model?
• Calculating derivatives by hand again is a lot of work L

17

linear layer

Σ

new layerinput

𝐿

loss

𝜎

softmax

Can the computers 
do this for us?

Yes J 



Computer-based Derivatives

• Numeric differentiation
• ./
.0
≈ / 01∆0 )/(0)

∆0
• Pick a small step size ∆𝑥
• Also called “finite differences”

18



𝑦 = !
"
  ∆𝑥 = 0.5

Computer-based Derivatives

• Numeric differentiation
• ./
.0
≈ / 01∆0 )/(0)

∆0
• Pick a small step size ∆𝑥
• Also called “finite differences”
• Easy to implement
• Arbitrarily inaccurate/unstable

19

real

approximation



Computer-based Derivatives

• Numeric differentiation
• Symbolic differentiation
• Computer “does algebra” and 

simplifies expressions
• What Wolfram Alpha does

https://www.wolframalpha.com/

20

𝑑
𝑑𝑥 (6𝑥 + 3𝑥

%)

https://www.wolframalpha.com/


Computer-based Derivatives

• Numeric differentiation
• Symbolic differentiation
• Computer “does algebra” and 

simplifies expressions
• What Wolfram Alpha does
• Exact (no approximation error)
• Complex to implement
• Only handles static expressions 

(what about e.g. loops?)

• Example:

while abs(x) > 5:
x = x / 2

• This loop could run once or 100 
times, it’s impossible to know

21



Computer-based Derivatives

• Numeric differentiation
• Symbolic differentiation
• Automatic differentiation
• Use the chain rule at runtime

22

𝑥 ℎ(𝑥) 𝑓(𝑔 ℎ 𝑥𝑔(ℎ 𝑥 )

𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑ℎ

𝑑ℎ
𝑑𝑥

Chain Rule



Computer-based Derivatives

• Numeric differentiation
• Symbolic differentiation
• Automatic differentiation
• Use the chain rule at runtime
• Gives exact results
• Handles dynamics (loops, etc.)
• Easier to implement
• Can’t simplify expressions

• sin%𝑥 + cos%𝑥 ⇒ 1
• Automatic differentiation 

doesn’t know this identity, will 
end up evaluating the entire 
expression on the left hand side

23



Computer-based Derivatives

• Numeric differentiation
• Symbolic differentiation
• Automatic differentiation
• Use the chain rule at runtime
• Gives exact results
• Handles dynamics (loops, etc.)
• Easier to implement
• Can’t simplify expressions
• What Tensorflow and PyTorch use

24

• sin%𝑥 + cos%𝑥 ⇒ 1
• Automatic differentiation 

doesn’t know this identity, will 
end up evaluating the entire 
expression on the left hand side



Two Main “Flavors” of Autodiff

• Forward Mode Autodiff
• Compute derivatives alongside the program as it is running

• Reverse Mode Autodiff
• Run the program, then compute derivatives (in reverse order)

25



Two Main “Flavors” of Autodiff

• Forward Mode Autodiff
• Compute derivatives alongside the program as it is running

• Reverse Mode Autodiff
• Run the program, then compute derivatives (in reverse order)

26



Forward Mode Autodiff

• Given 𝑓 𝑥, 𝑦 = 𝑥% + log 𝑦

27

𝑥

𝑦

Function inputs



Forward Mode Autodiff

• Given 𝑓 𝑥, 𝑦 = 𝑥% + log 𝑦

28

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦



Forward Mode Autodiff

• Given 𝑓 𝑥, 𝑦 = 𝑥% + log 𝑦
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𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

A computation graph



What is the chain rule for !"
!#
𝑎𝑛𝑑 !"

!$
?
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𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	



Forward Mode Autodiff

• Idea: Augment each node...
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𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	



Forward Mode Autodiff

• ...with functions that compute derivatives
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𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑐
𝜕𝑥

= 2𝑥

𝜕𝑏
𝜕𝑦

=
1
𝑦

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1



𝑏 = log 𝑦

𝜕𝑏
𝜕𝑦

=
1
𝑦

Forward Mode Autodiff

• Then, keep track of derivatives as you compute:
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𝑥

𝑦

𝑐

𝑏

𝑒

𝑑𝑥
𝑑𝑥

= 1
𝑐 = 𝑥%

𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑐
𝜕𝑥

= 2𝑥

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1



𝑏 = log 𝑦

𝜕𝑏
𝜕𝑦

=
1
𝑦

Forward Mode Autodiff

• Then, keep track of derivatives as you compute:
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𝑥

𝑦 𝑏

𝑒

𝑐 = 𝑥%

𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑐
𝜕𝑥

= 2𝑥

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑑𝑐
𝑑𝑥 .

𝑑𝑥
𝑑𝑥 = 2𝑥 . 1 = 2𝑥

𝑑𝑥
𝑑𝑥

= 1

𝑐



𝑏 = log 𝑦

𝜕𝑏
𝜕𝑦

=
1
𝑦

Forward Mode Autodiff

• Then, keep track of derivatives as you compute:
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𝑥

𝑦 𝑏

𝑐 = 𝑥%

𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑐
𝜕𝑥

= 2𝑥

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑑𝑐
𝑑𝑥 .

𝑑𝑥
𝑑𝑥 = 2𝑥 . 1 = 2𝑥

𝑑𝑥
𝑑𝑥

= 1

𝑐

𝑒
𝑑𝑒
𝑑𝑐
.
𝑑𝑐
𝑑𝑥

.
𝑑𝑥
𝑑𝑥

= 1 . 2𝑥 = 2𝑥



𝑐 = 𝑥%

𝜕𝑐
𝜕𝑥

= 2𝑥

Forward Mode Autodiff

• Can do the same thing starting from the second input:
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𝑥

𝑦

𝑐

𝑏

𝑒

𝑑𝑦
𝑑𝑦 = 1

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑏
𝜕𝑦

=
1
𝑦

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1



𝑐 = 𝑥%

𝜕𝑐
𝜕𝑥

= 2𝑥

Forward Mode Autodiff

• Can do the same thing starting from the second input:

37

𝑥

𝑦

𝑐

𝑒

𝑑𝑦
𝑑𝑦 = 1

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑏
𝜕𝑦

=
1
𝑦

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑑𝑏
𝑑𝑦

.
𝑑𝑦
𝑑𝑦

=
1
𝑦
. 1 =

1
𝑦

𝑏



𝑐 = 𝑥%

𝜕𝑐
𝜕𝑥

= 2𝑥

Forward Mode Autodiff

• Can do the same thing starting from the second input:
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𝑥

𝑦

𝑐

𝑑𝑦
𝑑𝑦 = 1

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑏
𝜕𝑦

=
1
𝑦

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑑𝑏
𝑑𝑦

.
𝑑𝑦
𝑑𝑦

=
1
𝑦
. 1 =

1
𝑦

𝑒

𝑏

𝑑𝑒
𝑑𝑏

.
𝑑𝑏
𝑑𝑦

.
𝑑𝑦
𝑑𝑦

= 1 ⋅
1
𝑦

=
1
𝑦



Forward Mode Autodiff

• We can think of each node...
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𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑐
𝜕𝑥

= 2𝑥

𝜕𝑏
𝜕𝑦

=
1
𝑦

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1



Forward Mode Autodiff

• ...as operating on a (value, derivative) tuple:
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𝑥

𝑦

𝑐

𝑏

(𝑐, &'
&(
) = (𝑥%, 2𝑥) 

(𝑏,
𝑑𝑏
𝑑𝑦) = (log 𝑦,

1
𝑦)

𝑒
(𝑒,
𝑑𝑒
𝑑𝑐) = 𝑐 + 𝑏, 1

(𝑒,
𝑑𝑒
𝑑𝑏
) = 𝑐 + 𝑏, 1

These tuples are 
called dual numbers(𝑥, &(

&(
) = (𝑥 , 1) 

(𝑦, &)
&)
) = (𝑦 , 1) 

Any questions?



Problems w/ Forward Mode for our use case

• For 𝑓: ℝ → ℝ' (1 input to n outputs) we can differentiate in one pass
• For 𝑓:ℝ' →ℝ (n inputs to 1 output) we need 𝑛 passes

41

𝑓: 	ℝ → ℝ* 𝑓:ℝ* →  ℝ

𝑁 = number of input features to the network, K =	number of nodes in the graph 

Can you calculate the 
time and memory 
complexity?

these derivatives 
are being 
calculated 

multiple times



Problems w/ Forward Mode for our use case

• For 𝑓: ℝ → ℝ' (1 input to n outputs) we can differentiate in one pass
• For 𝑓:ℝ' →ℝ (n inputs to 1 output) we need 𝑛 passes

42

𝑓: 	ℝ → ℝ* 𝑓:ℝ* →  ℝ

these derivatives 
are being 
calculated 

multiple times

𝑁 = number of input features to the network, K =	number of nodes in the graph 

Forward mode: 𝑂(𝑁 ∗ 𝐾) time,  𝑂(1) memory

Can you calculate the 
time and memory 
complexity?



Two Main “Flavors” of Autodiff

• Forward Mode Autodiff
• Compute derivatives alongside the program as it is running

• Reverse Mode Autodiff
• Run the program, then compute derivatives (in reverse order)

43



Reverse Mode Autodiff

• Idea: first, run the function forward to produce the graph
• 𝑓 𝑥, 𝑦 = 𝑥% + log 𝑦

44

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	



Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the 
inputs 
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𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	



Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the 
inputs 
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𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1



Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the 
inputs 
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𝑥

𝑦 𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

𝑐
𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑 𝑐 + 𝑏
𝑑𝑐 . 1 = 1



Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the 
inputs 
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𝑦 𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

𝑐
𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑 𝑐 + 𝑏
𝑑𝑐 . 1 = 1

𝑥
𝑑𝑐
𝑑𝑥 .

𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑(𝑥!)
𝑑𝑥 . 1 = 2𝑥



Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the 
inputs 
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𝑦

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

𝑐
𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑 𝑐 + 𝑏
𝑑𝑐 . 1 = 1

𝑥
𝑑𝑐
𝑑𝑥 .

𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑(𝑥!)
𝑑𝑥 . 1 = 2𝑥

𝑏
𝑑𝑒
𝑑𝑏

.
𝑑𝑒
𝑑𝑒

=
𝑑 𝑐 + 𝑏
𝑑𝑏

. 1 = 1



Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the 
inputs 
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𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

𝑐
𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑 𝑐 + 𝑏
𝑑𝑐 . 1 = 1

𝑥
𝑑𝑐
𝑑𝑥 .

𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑(𝑥!)
𝑑𝑥 . 1 = 2𝑥

𝑏
𝑑𝑒
𝑑𝑏

.
𝑑𝑒
𝑑𝑒

=
𝑑 𝑐 + 𝑏
𝑑𝑏

. 1 = 1

𝑦
𝑑𝑏
𝑑𝑦 .

𝑑𝑒
𝑑𝑏 .

𝑑𝑒
𝑑𝑒 =

𝑑 log 𝑦
𝑑𝑦 . 1 =

1
𝑦

𝑁 = number of input features to the network, K =	number of nodes in the graph 

Can you calculate the time and 
memory complexity?



Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the 
inputs 
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𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

𝑐
𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑 𝑐 + 𝑏
𝑑𝑐 . 1 = 1

𝑥
𝑑𝑐
𝑑𝑥 .

𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑(𝑥!)
𝑑𝑥 . 1 = 2𝑥

𝑏
𝑑𝑒
𝑑𝑏

.
𝑑𝑒
𝑑𝑒

=
𝑑 𝑐 + 𝑏
𝑑𝑏

. 1 = 1

𝑦
𝑑𝑏
𝑑𝑦 .

𝑑𝑒
𝑑𝑏 .

𝑑𝑒
𝑑𝑒 =

𝑑 log 𝑦
𝑑𝑦 . 1 =

1
𝑦

𝑁 = number of input features to the network, K =	number of nodes in the graph 

𝑂(𝐾) time,  𝑂(𝐾) memory



Reverse Mode Autodiff is Time Efficient

• Forward mode: 𝑂(𝑁 ∗ 𝐾) time,  𝑂(1) memory
• 𝑁 = number of inputs features to the network, 
• 𝐾 = number of nodes in the graph 

• Reverse mode: 𝑂(𝐾) time,  𝑂(𝐾) memory

• The memory cost comes from having to keep the entire graph from 
the forward pass in order to then differentiate backwards
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Any questions?



Recap Gradient Descent pseudocode

Stochastic Gradient Descent

Batching

Computer based 
derivatives

Deep 
Learning 
Frameworks

𝑥 ℎ(𝑥) 𝑓(𝑔 ℎ 𝑥𝑔(ℎ 𝑥 )

𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑ℎ

𝑑ℎ
𝑑𝑥

Chain RuleNumeric differentiation

Symbolic differentiation

Automatic differentiation (Autodiff)
(1) Forward mode
(2) Reverse mode


