

Brown IgniteCS

An open **CS education club**!

Design curricula and teach at schools around Rhode Island!

Please join our emailing list if interested!

Also, contact us for more info or questions!

- jitpuwapat mokkamakkul@brown.edu
- angel arrazola@brown.edu

CSCI 1470/2470 Spring 2022

Ritambhara Singh

February 07, 2024 Wednesday

ChatGPT prompt "minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner"

Gradient descent + Autodiff

Deep Learning

Recap: Forward Pass

Compute the prediction or evaluate the loss for a single input *x*.

Goal of learning: Minimize the total loss for all x in training data.

Recap: Forward Pass

Compute the prediction or evaluate the loss for a single input *x*.

Goal of learning: Minimize the total loss for all x in training data with respect to model parameters W, b.

Recap: Backpropagation (Backward Pass)

Gradient descent: $\Delta W = -\alpha \nabla \hat{L}(W)$ and $\Delta \boldsymbol{b} = -\alpha \nabla \hat{L}(\boldsymbol{b})$

Backpropagation: Compute ΔW and Δb via chain rule.

5

Recap: Computation graph

6

Today's goal – learn about deep learning frameworks

(1) Gradient Descent pseudocode

(2) Stochastic Gradient Descent (SGD)

(3) Automatic differentiation

Putting Everything Together: Gradient Descent

delta_W is 2-D matrix of 0's in the shape of W

for each input and corresponding answer a:

Ŀ	probabilities = run_network(input)	Forward pass
for j in range(len(probabilities)):		
	y_j = 1 if j == a else 0	Backward pass:
	for i in range(len(input):	Compute $\frac{\partial L}{\partial W_{ij}}$ for every W_{ij}
	delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i	

```
W += delta_W
```

Putting Everything Together: Gradient Descent

delta_W is 2-D matrix of 0's in the shape of W

for each input and corresponding answer a:

probabilities = run_network(input)	Forward pass		
for j in range(len(probabilities)):			
y_j = 1 if j == a else 0	Backward pass:		
for i in range(len(input):	Backward pass: Compute $\frac{\partial L}{\partial W_{ij}}$ for every W_{ij}		
delta_W[j][i] += alpha * (y_j – probabilities[j]) * inpu			
W += delta_W	Gradient descent update		

Gradient Descent: Limitation?

delta_W is 2-D matrix of 0's in the shape of W

for each input and corresponding answer a:

```
probabilities = run_network(input)
```

```
for j in range(len(probabilities)):
```

```
y_j = 1 if j == a else 0
```

for i in range(len(input):

delta_W[j][i] += alpha * (y_j - probabilities[j]) * input[i]

W += delta_W

...to update the weights only once

We iterate over the *entire* dataset...

Stochastic Gradient Descent (SGD)

- Alternative is to train on *batches*: small subsets of the training data
- Why *stochastic*: Each batch is **randomly** sampled from the full training data
- We update the parameters after each **batch**

Stochastic Gradient Descent: Pseudocode

for each batch:

```
# delta_W is 2-D matrix of 0's in the shape of W
```

for each input and corresponding answer a in batch:

```
probabilities = run_network(input)
```

```
for j in range(len(probabilities)):
```

```
y_j = 1 if j == a else 0
```

for i in range(len(input):

```
delta_W[j][i] += alpha * (y_j - probabilities[j]) * input[i]
```

W += delta_W

Stochastic Gradient Descent: Pseudocode

for each batch:

W += delta_W

```
# delta_W is 2-D matrix of 0's in the shape of W
```

for each input and corresponding answer a in batch:

```
probabilities = run_network(input)
```

```
for j in range(len(probabilities)):
```

```
y_j = 1 if j == a else 0
```

for i in range(len(input):

```
delta_W[j][i] += alpha * (y_j - probabilities[j]) * input[i]
```

Now we update weights *after every batch*

Stochastic Gradient Descent (SGD)

- Train on *batches*: small subsets of the training data
- We update the parameters after each batch
- This makes the training process *stochastic* or non-deterministic: *batches are a *random* subsample of the data

 *do not provide the gradient that the entire dataset as a whole would provide at once
- Formally: the gradient of a randomly-sampled batch is an unbiased estimator of the gradient over the whole dataset
 - "Unbiased": expected value == the true gradient, but may have large variance (i.e. the gradient may 'jitter around' a lot)

What size should the batch be?

• Rule of thumb nowadays: Pick the largest batch size you can fit on your GPU!

Generalizing Backpropagation

Generalizing Backpropagation

- What if we want to add another layer to our model?
- Calculating derivatives by hand *again* is a lot of work \otimes

- Numeric differentiation
 - $\frac{df}{dx} \approx \frac{f(x + \Delta x) f(x)}{\Delta x}$
 - Pick a small step size Δx
 - Also called "finite differences"

- Numeric differentiation
 - $\frac{df}{dx} \approx \frac{f(x + \Delta x) f(x)}{\Delta x}$
 - Pick a small step size Δx
 - Also called "finite differences"
 - Easy to implement
 - Arbitrarily inaccurate/unstable

- Numeric differentiation
- Symbolic differentiation
 - Computer "does algebra" and simplifies expressions
 - What Wolfram Alpha does
 <u>https://www.wolframalpha.com/</u>

 $d/dx (2x + 3x^2 + x (6 - 2))$ $\int_{\Sigma \vartheta}^{\pi}$ Extended Keyboard 1 Upload Derivative: $\frac{d}{dx}(2x+3x^2+x(6-2)) = 6(x+1)$ $\frac{d}{dx}(6x+3x^2)$

- Numeric differentiation
- Symbolic differentiation
 - Computer "does algebra" and simplifies expressions
 - What Wolfram Alpha does
 - Exact (no approximation error)
 - Complex to implement
 - Only handles static expressions (what about e.g. loops?)

• Example:

while abs(x) > 5: x = x / 2

• This loop could run once or 100 times, it's impossible to know

- Numeric differentiation
- Symbolic differentiation
- Automatic differentiation
 - Use the chain rule at runtime

- Numeric differentiation
- Symbolic differentiation
- Automatic differentiation
 - Use the chain rule at runtime
 - Gives exact results
 - Handles dynamics (loops, etc.)
 - Easier to implement
 - Can't simplify expressions

• $\sin^2 x + \cos^2 x \Rightarrow 1$

 Automatic differentiation doesn't know this identity, will end up evaluating the entire expression on the left hand side

- Numeric differentiation
- Symbolic differentiation
- Automatic differentiation
 - Use the chain rule at runtime
 - Gives exact results
 - Handles dynamics (loops, etc.)
 - Easier to implement
 - Can't simplify expressions
 - What Tensorflow and PyTorch use

• $\sin^2 x + \cos^2 x \Rightarrow 1$

 Automatic differentiation doesn't know this identity, will end up evaluating the entire expression on the left hand side

Two Main "Flavors" of Autodiff

• Forward Mode Autodiff

• Compute derivatives alongside the program as it is running

Reverse Mode Autodiff

• Run the program, then compute derivatives (in reverse order)

Two Main "Flavors" of Autodiff

• Forward Mode Autodiff

• Compute derivatives alongside the program as it is running

Reverse Mode Autodiff

• Run the program, then compute derivatives (in reverse order)

• Given $f(x, y) = x^2 + \log y$

Function inputs

• Given $f(x, y) = x^2 + \log y$

What is the chain rule for $\frac{de}{dx}$ and $\frac{de}{dy}$?

• Idea: Augment each node...

• ...with functions that compute derivatives

• Then, keep track of derivatives as you compute:

• Then, keep track of derivatives as you compute:

• Then, keep track of derivatives as you compute:

• Can do the same thing starting from the second input:

• Can do the same thing starting from the second input:

• Can do the same thing starting from the second input:

• We can think of each node...

• ...as operating on a (value, derivative) tuple:

Problems w/ Forward Mode for our use case

- For $f: \mathbb{R} \to \mathbb{R}^n$ (1 input to n outputs) we can differentiate in one pass
- For $f: \mathbb{R}^n \to \mathbb{R}$ (n inputs to 1 output) we need n passes

N = number of input features to the network, K = number of nodes in the graph

Can you calculate the time and memory complexity?

these derivatives are being calculated multiple times

 $f: \mathbb{R}^n \to \mathbb{R}$

Problems w/ Forward Mode for our use case

- For $f: \mathbb{R} \to \mathbb{R}^n$ (1 input to n outputs) we can differentiate in one pass
- For $f: \mathbb{R}^n \to \mathbb{R}$ (n inputs to 1 output) we need n passes

N = number of input features to the network, K = number of nodes in the graph

Forward mode: O(N * K) time, O(1) memory

Can you calculate the time and memory complexity?

these derivatives are being calculated multiple times

 $f: \mathbb{R}^n \to \mathbb{R}$

Two Main "Flavors" of Autodiff

• Forward Mode Autodiff

- Compute derivatives alongside the program as it is running
- Reverse Mode Autodiff
 - Run the program, then compute derivatives (in reverse order)

• Idea: first, run the function forward to produce the graph

N = number of input features to the network, K = number of nodes in the graph

Reverse Mode Autodiff

Can you calculate the time and memory complexity?

Reverse Mode Autodiff is Time Efficient

Any questions?

- Forward mode: O(N * K) time, O(1) memory
 - N = number of inputs features to the network,
 - K = number of nodes in the graph
- Reverse mode: O(K) time, O(K) memory
- The memory cost comes from having to keep the entire graph from the forward pass in order to then differentiate backwards

