An open CS education club!

Design curricula and teach at schools around
Rhode Island!

Please join our emailing list if interested!

Also, contact us for more info or questions!

> jitpuwapat _mokkamakkul@brown.edu
> angel arrazola@brown.edu

CSCl 1470/2470
Spring 2022

Ritambhara Singh

February 07, 202
Wednesday'

~- < . /¢

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Recap: Forward Pass

Compute the prediction or evaluate the loss for a single input x.

Goal of learning: Minimize the total loss for all x in training data.

input linear layer softmax loss

Recap: Forward Pass

Compute the prediction or evaluate the loss for a single input x.

Goal of learning: Minimize the total loss for all x in training data
with respect to model parameters W, b.

parameters linear layer softmax loss

Recap: Backpropagation (Backward Pass)

Gradient descent: AW = —a VL(W) and Ab = —a VL(b)

Backpropagation: Compute AW and Ab via chain rule.

j dpa . dL
dW]l dW]l dl; dpg

dL
dpq

dPa
dl;

dWJ i

parameters linear layer softmax loss

Recap: Computation graph
Parameter update:
Wi de de 0hk

- Upstream
Wk OWy gradient:
de
dhy,

Local gradient
fre (Re—1, wi)
dhy,

—ahk—l Local gradient

A

Downstream gradient:
de de OJhy

— Forward pass

- < Backward pass
ahk_l ahk ahk_l

Lazebnik

https://slazebni.cs.illinois.edu/spring22/

Today’s goal — learn about deep learning
frameworks

(1) Gradient Descent pseudocode
(2) Stochastic Gradient Descent (SGD)

(3) Automatic differentiation

Putting Everything Together: Gradient

Descent

delta_W is 2-D matrix of O’s in the shape of W

for each input and corresponding answer a:

probabilities = run_network(input)

for j in range(len(probabilities)):

vj=1lifj==aelse0
foriin range(len(input):

delta_W][j][i] += alpha * (y_j — probabilities[j]) * input][i]

W += delta_W

Forward pass

Backward pass:
oL

an-j
Over the entire dataset

Compute for every W;;

Putting Everything Together: Gradient

Descent

delta_W is 2-D matrix of O’s in the shape of W

for each input and corresponding answer a:

probabilities = run_network(input)

for j in range(len(probabilities)):

vj=1lifj==aelse0
foriin range(len(input):

delta_W][j][i] += alpha * (y_j — probabilities[j]) * input][i]

Forward pass

Backward pass:
oL

an-j
Over the entire dataset

Compute for every W;;

W +=delta_W Gradient descent update

Gradient Descent: Limitation?

delta_W is 2-D matrix of O’s in the shape of W

‘ for each input and corresponding answer a: ‘ We iterate over the entire dataset...

probabilities = run_network(input)
for j in range(len(probabilities)):
vj=1lifj==aelse0
foriin range(len(input):

delta_W][j][i] += alpha * (y_j — probabilities[j]) * input][i]

W += delta_W ...to update the weights only once

10

Stochastic Gradient Descent (SGD)

 Alternative is to train on batches: small subsets of the training data

 Why stochastic: Each batch is randomly sampled from the full training
data

* We update the parameters after each batch

Stochastic Gradient Descent: Pseudocode

for each batch:
delta_W is 2-D matrix of O’s in the shape of W
for each input and corresponding answer a in batch:
probabilities = run_network(input)
for j in range(len(probabilities)):
v j=1lifj==aelse0
foriin range(len(input):
delta_WI[j][i] += alpha * (y_j — probabilities[j]) * input][i]
W +=delta_ W

Stochastic Gradient Descent: Pseudocode

for each batch:

A

delta_W is 2-D matrix of O’s in the shape of W

for each input and corresponding answer a in batch:

probabilities = run_network(input)

for j in range(len(probabilities)):

v j=1lifj==aelseO

foriin range(len(input):

delta_WI[j][i] += alpha * (y_j — probabilities[j]) * input][i]

W += delta_W

Now we update weights after every batch

13

Stochastic Gradient Descent (SGD)

* Train on batches: small subsets of the training data
* We update the parameters after each batch

* This makes the training process stochastic or non-deterministic: -
*batches are a random subsample of the data

*do not provide the gradient that the entire dataset as a whole
would provide at once

* Formally: the gradient of a randomly-sampled batch is an unbiased
estimator of the gradient over the whole dataset

* “Unbiased”: expected value == the true gradient, but may have large variance
(i.e. the gradient may fjitter around’ a lot)

Any questions?

What size should the batch be?

Small batch size: Large batch size:
Fast, jittery updates Slowetr, stable updates
Batch Size: 1 Batch Size: 100

1 20
20 -

15 A
15 A

0
%)
3101
10 -

'*:A».M,,.A.J...L A Y POV TP PR
T

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Epoch Epoch

* Rule of thumb nowadays: Pick the largest batch size you can fit on your GPU!

15

Generalizing Backpropagation

input linear layer softmax

loss

16

Generalizing Backpropagation

* What if we want to add another layer to our model?
* Calculating derivatives by hand again is a lot of work ®

B
» P

input linear layer new layer softmax loss

17

Computer-based Derivatives

* Numeric differentiation

o Y LA (X)
dx Ax
* Pick a small step size Ax

e Also called “finite differences”

Computer-based Derivatives

* Numeric differentiation

o Y LA (X)
dx Ax
* Pick a small step size Ax

Also called “finite differences”
e Easy to implement
* Arbitrarily inaccurate/unstable

Ax = 0.5

19

Computer-based Derivatives

e Numeric differentiation
d/dx (2x + 3x*2 + x (6 - 2))

e Symbolic differentiation
* Computer “does algebra” and ffo Extended Keyboard * Upload
simplifies expressions

 What Wolfram Alpha does

Derivative:
https://www.wolframalpha.com/ SHvete

d -
—(2x+3x +x(6-2))=6(x+1)

dx \ d /

me + 3x2)

20

https://www.wolframalpha.com/

Computer-based Derivatives

 Numeric differentiation * Example:

e Symbolic differentiation
 Computer “does algebra” and

while abs(x) > 5:

simplifies expressions X =Xx/ 2
 What Wolfram Alpha does
 Exact (no approximation error) * This loop could run once or 100
e Complex to implement times, it’s impossible to know

Only handles static expressions
(what about e.g. loops?)

21

Computer-based Derivatives

e Numeric differentiation
e Symbolic differentiation Chain Rule

« Automatic differentiation m m m

. . dx dh d
e Use the chain rule at runtime g

f(g(h(x))

X h(x)

22

Computer-based Derivatives

e Numeric differentiation e sinx + cos?x = 1

e Symbolic differentiation e Automatic differentiation
doesn’t know this identity, will
end up evaluating the entire
expression on the left hand side

* Automatic differentiation
* Use the chain rule at runtime
* Gives exact results
Handles dynamics (loops, etc.)
Easier to implement
Can’t simplify expressions

23

Computer-based Derivatives

e Numeric differentiation e sinx + cos?x = 1

e Symbolic differentiation e Automatic differentiation
doesn’t know this identity, will
end up evaluating the entire
expression on the left hand side

* Automatic differentiation
* Use the chain rule at runtime
* Gives exact results
Handles dynamics (loops, etc.)
Easier to implement
Can’t simplify expressions
What Tensorflow and PyTorch use

24

Two Main “Flavors” of Autodiff

e Forward Mode Autodiff

 Compute derivatives alongside the program as it is running

* Reverse Mode Autodiff
* Run the program, then compute derivatives (in reverse order)

Two Main “Flavors” of Autodiff

e Forward Mode Autodiff

* Compute derivatives alongside the program as it is running

* Reverse Mode Autodiff
* Run the program, then compute derivatives (in reverse order)

26

Forward Mode Autodiff

* Given f(x,y) = x* +logy

Function inputs

27

Forward Mode Autodiff

* Given f(x,y) = x* +logy

c = x?

® o

b =logy

I ‘ I

Forward Mode Autodiff

* Given f(x,y) = x* +logy

2

c=X

A computation graph

e=c+b=x*+logy

29

. . d d
What is the chain rule for — and —7?

dx dy

e=c+b=x%+logy

30

Forward Mode Autodiff

* |dea: Augment each node...

2

c=X

e=c+b=x*+logy

31

Forward Mode Autodiff

e ...with functions that compute derivatives

e=c+b=x*+logy

de _ de

-1 7!t

Forward Mode Autodiff

* Then, keep track of derivatives as you compute:

e=c+b=x*+logy

33

Forward Mode Autodiff

* Then, keep track of derivatives as you compute:

e=c+b=x*+logy

34

Forward Mode Autodiff

* Then, keep track of derivatives as you compute:

_.(a.a):l-(Zx)=2x

e=c+b=x%+logy

35

Forward Mode Autodiff

e Can do the same thing starting from the second input:

e=c+b=x*+logy

de

a1

36

Forward Mode Autodiff

e Can do the same thing starting from the second input:

e=c+b=x*+logy

de

a1

37

Forward Mode Autodiff

e Can do the same thing starting from the second input:

e=c+b=x*+logy

de

a1

38

Forward Mode Autodiff

 We can think of each node...

e=c+b=x*+logy

39

Any questions?

Forward Mode Autodiff ?
-

e ...as operating on a (value, derivative) tuple:

These tuples are

dx dey _
(hgd =0 D (6g) = (%20 called dual numbers

de - b1
(QIE)_(C-I_ r)

(e, Z—Z) =(+b1)

ayy _ ab, _ 1
) =0.D O dy) = (logy, y)

40

Problems w/ Forward Mode for our use case

* For f: R = R" (1 input to n outputs) we can differentiate in one pass

Can you calculate the

* For f: R" - R (n inputs to 1 output) we need n passes time and memory

complexity?

N = number of input features to the network, K = number of nodes in the graph

these derivatives

Join at menticom | use code 42316933 are being
calculated
fi R—>R" fiR" > R multiple times

.
o9

41

Problems w/ Forward Mode for our use case

* For f: R = R" (1 input to n outputs) we can differentiate in one pass

Can you calculate the

* For f: R" - R (n inputs to 1 output) we need n passes time and memory

complexity?

N = number of input features to the network, K = number of nodes in the graph

these derivatives

Forward mode: O(N * K) time, O(1) memory are being
calculated
fi R—>R" fiR" > R multiple times

.
o9

42

Two Main “Flavors” of Autodiff

e Forward Mode Autodiff

* Compute derivatives alongside the program as it is running

* Reverse Mode Autodiff
* Run the program, then compute derivatives (in reverse order)

43

Reverse Mode Autodiff

e |dea: first, run the function forward to produce the graph
* f(x,y) = x* +1logy

2

c=X

e=c+b=x*+logy

44

Reverse Mode Autodiff

* Then, compute derivatives backward from the final node toward the
inputs

c=X

e=c+b=x*+logy

45

Reverse Mode Autodiff

* Then, compute derivatives backward from the final node toward the
inputs

c=X

e=c+b=x*+logy

46

Reverse Mode Autodiff

* Then, compute derivatives backward from the final node toward the
inputs

47

Reverse Mode Autodiff

* Then, compute derivatives backward from the final node toward the
inputs

dc de de d(x?) -

O ac de ax ! 2 de de _d(c+b) |

48

Reverse Mode Autodiff

* Then, compute derivatives backward from the final node toward the
inputs

49

N = number of input features to the network, K = number of nodes in the graph

Can you calculate the time and

Reverse Mode Autodiff memory complexity?

* Then, compute derivatives backward from the final node toward the
inputs

db de de d(logy) -

50

N = number of input features to the network, K = number of nodes in the graph

Reverse Mode Autodiff

* Then, compute derivatives backward from the final node toward the
inputs

O(K) time, O(K) memory

51

Reverse Mode Autodiff is Time Efficient '

* Forward mode: O(N * K) time, O(1) memory
« N = number of inputs features to the network,
* K = number of nodes in the graph

* Reverse mode: O(K) time, O(K) memory

 The memory cost comes from having to keep the entire graph from
the forward pass in order to then differentiate backwards

Reca p I Gradient Descent pseudocode I S
Computer based I Stochastic Gradient Descent I
derivatives
I Batching I | N
I Numeric differentiation I Chain Rule
- AN & dg\ & dfh
5 I Symbolic differentiation I dx d d§|
eep
Learning X h(x) (g(h(x)
Frameworks Automatic differentiation (Autodiff)
(1) Forward mode
— (2) Reverse mode

