An open CS education club!

Design curricula and teach at schools around Rhode Island!

Please join our emailing list if interested!

Also, contact us for more info or questions!
> jitpuwapat mokkamakkul@brown.edu
> angel arrazola@brown.edu

Recap: Forward Pass

Compute the prediction or evaluate the loss for a single input \boldsymbol{x}.
Goal of learning: Minimize the total loss for all \boldsymbol{x} in training data.

Recap: Forward Pass

Compute the prediction or evaluate the loss for a single input \boldsymbol{x}.
Goal of learning: Minimize the total loss for all \boldsymbol{x} in training data with respect to model parameters $\boldsymbol{W}, \boldsymbol{b}$.

Recap: Backpropagation (Backward Pass)

Gradient descent: $\Delta W=-\alpha \nabla \hat{L}(W)$ and $\Delta \boldsymbol{b}=-\alpha \nabla \hat{L}(\boldsymbol{b})$
Backpropagation: Compute ΔW and $\Delta \boldsymbol{b}$ via chain rule.
$\frac{d L}{d w_{j, i}}=\frac{d l_{j}}{d w_{j, i}} \cdot \frac{d p_{a}}{d l_{j}} \cdot \frac{d L}{d p_{a}}$

Recap: Computation graph

Parameter update:

Today's goal - learn about deep learning frameworks

(1) Gradient Descent pseudocode
(2) Stochastic Gradient Descent (SGD)
(3) Automatic differentiation

Putting Everything Together: Gradient Descent

\# delta_W is 2-D matrix of 0's in the shape of W
for each input and corresponding answer a:
probabilities = run_network(input)
Forward pass
for j in range(len(probabilities)):
$\mathbf{y} \mathbf{j}=\mathbf{1}$ if $\mathbf{j}==$ a else $\mathbf{0}$
for i in range(len(input):
delta_W[j][i] += alpha * (y_j - probabilities[j]) * input[i]
Backward pass:
Compute $\frac{\partial L}{\partial W_{i j}}$ for every $W_{i j}$
Over the entire dataset
W += delta_W

Putting Everything Together: Gradient Descent

\# delta_W is 2-D matrix of 0's in the shape of W
for each input and corresponding answer a:

probabilities $=$ run_network(input)	Forward pass

for j in range(len(probabilities)):
$\mathbf{y} \mathbf{j}=\mathbf{1}$ if $\mathbf{j}==$ a else $\mathbf{0}$
for i in range(len(input):
delta_W[j][i] += alpha * (y \mathbf{y} - probabilities[j]) * input[i]

Backward pass:
Compute $\frac{\partial L}{\partial W_{i j}}$ for every $W_{i j}$
Over the entire dataset

W += delta_W

Gradient Descent: Limitation?

```
# delta_W is 2-D matrix of O's in the shape of W
for each input and corresponding answer a:
    probabilities = run_network(input)
    for j in range(len(probabilities)):
        y_j=1 if j == a else 0
        for i in range(len(input):
        delta_W[j][i] += alpha * (y_j - probabilities[j]) * input[i]
W += delta_W ...to update the weights only once
```


Stochastic Gradient Descent (SGD)

- Alternative is to train on batches: small subsets of the training data
- Why stochastic: Each batch is randomly sampled from the full training data
- We update the parameters after each batch

Stochastic Gradient Descent: Pseudocode

for each batch:
\# delta_W is 2-D matrix of O's in the shape of W
for each input and corresponding answer a in batch:
probabilities = run_network(input)
for j in range(len(probabilities)):
$y \mathbf{j}=1$ if $\mathbf{j}==$ a else 0
for i in range(len(input):
delta_W[j][i] += alpha * (y \mathbf{y} - probabilities[j]) * input[i]
W += delta_W

Stochastic Gradient Descent: Pseudocode

for each batch:
\# delta_W is 2-D matrix of 0 's in the shape of W
for each input and corresponding answer a in batch:
probabilities = run_network(input)
for j in range(len(probabilities)):
$y \mathbf{j}=1$ if $\mathbf{j}==$ a else 0
for i in range(len(input):
delta_W[j][i] += alpha * (y \mathbf{y} - probabilities[j]) * input[i]
W += delta_W
Now we update weights after every batch

Stochastic Gradient Descent (SGD)

- Train on batches: small subsets of the training data
- We update the parameters after each batch
- This makes the training process stochastic or non-deterministic: *batches are a random subsample of the data *do not provide the gradient that the entire dataset as a whole would provide at once
- Formally: the gradient of a randomly-sampled batch is an unbiased estimator of the gradient over the whole dataset
- "Unbiased": expected value == the true gradient, but may have large variance (i.e. the gradient may 'jitter around' a lot)

What size should the batch be?

Small batch size:
Fast, jittery updates

Large batch size:
Slower, stable updates

- Rule of thumb nowadays: Pick the largest batch size you can fit on your GPU!

Generalizing Backpropagation

Generalizing Backpropagation

- What if we want to add another layer to our model?
- Calculating derivatives by hand again is a lot of work θ

Can the computers do this for us?

Computer-based Derivatives

- Numeric differentiation
- $\frac{d f}{d x} \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}$
- Pick a small step size Δx
- Also called "finite differences"

Computer-based Derivatives

- Numeric differentiation

$$
y=\frac{1}{x} \quad \Delta x=0.5
$$

- $\frac{d f}{d x} \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}$
- Pick a small step size Δx
- Also called "finite differences"
- Easy to implement
- Arbitrarily inaccurate/unstable

Computer-based Derivatives

- Numeric differentiation
- Symbolic differentiation
- Computer "does algebra" and simplifies expressions
- What Wolfram Alpha does https://www.wolframalpha.com/
$d / d x\left(2 x+3 x^{\wedge} 2+x(6-2)\right)$
$\int_{\Sigma 0}^{\pi}$ Extended Keyboard ㄹ Upload

Derivative:
$\frac{d}{d x}\left(2 x+3 x^{2}+x(6-2)\right)=6(x+1)$

Computer-based Derivatives

- Numeric differentiation
- Symbolic differentiation
- Computer "does algebra" and simplifies expressions
- What Wolfram Alpha does
- Exact (no approximation error)
- Complex to implement
- Only handles static expressions (what about e.g. loops?)
- Example:

$$
\begin{gathered}
\text { while abs(x) > 5: } \\
x=x / 2
\end{gathered}
$$

- This loop could run once or 100 times, it's impossible to know

Computer-based Derivatives

- Numeric differentiation
- Symbolic differentiation
- Automatic differentiation
- Use the chain rule at runtime

Computer-based Derivatives

- Numeric differentiation
- Symbolic differentiation
- Automatic differentiation
- Use the chain rule at runtime
- Gives exact results
- Handles dynamics (loops, etc.)
- Easier to implement
- Can't simplify expressions
- $\sin ^{2} x+\cos ^{2} x \Rightarrow 1$
- Automatic differentiation doesn't know this identity, will end up evaluating the entire expression on the left hand side

Computer-based Derivatives

- Numeric differentiation
- Symbolic differentiation
- Automatic differentiation
- Use the chain rule at runtime
- Gives exact results
- Handles dynamics (loops, etc.)
- Easier to implement
- Can't simplify expressions
- What Tensorflow and PyTorch use
- $\sin ^{2} x+\cos ^{2} x \Rightarrow 1$
- Automatic differentiation doesn't know this identity, will end up evaluating the entire expression on the left hand side

Two Main "Flavors" of Autodiff

- Forward Mode Autodiff
- Compute derivatives alongside the program as it is running
- Reverse Mode Autodiff
- Run the program, then compute derivatives (in reverse order)

Two Main "Flavors" of Autodiff

- Forward Mode Autodiff
- Compute derivatives alongside the program as it is running
- Reverse Mode Autodiff
- Run the program, then compute derivatives (in reverse order)

Forward Mode Autodiff

- Given $f(x, y)=x^{2}+\log y$

Function inputs
y

Forward Mode Autodiff

- Given $f(x, y)=x^{2}+\log y$

Forward Mode Autodiff

- Given $f(x, y)=x^{2}+\log y$

What is the chain rule for $\frac{d e}{d x}$ and $\frac{d e}{d y}$?

Forward Mode Autodiff

- Idea: Augment each node...

Forward Mode Autodiff

- ...with functions that compute derivatives

Forward Mode Autodiff

- Then, keep track of derivatives as you compute:

Forward Mode Autodiff

- Then, keep track of derivatives as you compute:

Forward Mode Autodiff

- Then, keep track of derivatives as you compute:

Forward Mode Autodiff

- Can do the same thing starting from the second input:

Forward Mode Autodiff

- Can do the same thing starting from the second input:

Forward Mode Autodiff

- Can do the same thing starting from the second input:

Forward Mode Autodiff

- We can think of each node...

Forward Mode Autodiff

- ...as operating on a (value, derivative) tuple:

These tuples are called dual numbers

$$
\begin{aligned}
& \left(e, \frac{d e}{d c}\right)=(c+b, 1) \\
& \left(e, \frac{d e}{d b}\right)=(c+b, 1)
\end{aligned}
$$

Problems w/ Forward Mode for our use case

- For $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ (1 input to n outputs) we can differentiate in one pass
- For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (n inputs to 1 output) we need n passes

```
N = number of input features to the network, K = number of nodes in the graph
```

Join at menti.com | use code 42316933

$$
f: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

> Can you calculate the time and memory complexity?
these derivatives
are being
calculated
multiple times

Problems w/ Forward Mode for our use case

- For $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ (1 input to n outputs) we can differentiate in one pass
- For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (n inputs to 1 output) we need n passes

$$
N=\text { number of input features to the network, } \mathrm{K}=\text { number of nodes in the graph }
$$

> Can you calculate the time and memory complexity?
these derivatives
are being
calculated

$$
f: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

Two Main "Flavors" of Autodiff

- Forward Mode Autodiff
- Compute derivatives alongside the program as it is running
- Reverse Mode Autodiff
- Run the program, then compute derivatives (in reverse order)

Reverse Mode Autodiff

- Idea: first, run the function forward to produce the graph
- $f(x, y)=x^{2}+\log y$

$$
c=x^{2}
$$

Reverse Mode Autodiff

- Then, compute derivatives backward from the final node toward the inputs

Reverse Mode Autodiff

- Then, compute derivatives backward from the final node toward the inputs

Reverse Mode Autodiff

- Then, compute derivatives backward from the final node toward the inputs

Reverse Mode Autodiff

- Then, compute derivatives backward from the final node toward the inputs

Reverse Mode Autodiff

- Then, compute derivatives backward from the final node toward the inputs

Reverse Mode Autodiff

Can you calculate the time and memory complexity?

- Then, compute derivatives backward from the final node toward the inputs

Reverse Mode Autodiff

- Then, compute derivatives backward from the final node toward the inputs

Reverse Mode Autodiff is Time Efficient

- Forward mode: $O(N * K)$ time, $O(1)$ memory
- $N=$ number of inputs features to the network,
- $K=$ number of nodes in the graph
- Reverse mode: $O(K)$ time, $O(K)$ memory
- The memory cost comes from having to keep the entire graph from the forward pass in order to then differentiate backwards

