
Brown IgniteCS
An open CS education club!

Design curricula and teach at schools around
Rhode Island!

Please join our emailing list if interested!

Also, contact us for more info or questions!

➢ jitpuwapat_mokkamakkul@brown.edu
➢ angel_arrazola@brown.edu

Emailing List

Deep Learning
CSCI 1470/2470

Spring 2022

Ritambhara Singh

February 07, 2024
Wednesday

Gradient descent + Autodiff

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Recap: Forward Pass

3

𝐱

linear layer

FC

softmaxinput

𝐿

loss

Softmax

Compute the prediction or evaluate the loss for a single input 𝒙.

Goal of learning: Minimize the total loss for all 𝒙 in training data.

Recap: Forward Pass

4

Compute the prediction or evaluate the loss for a single input 𝒙.

Goal of learning: Minimize the total loss for all 𝒙 in training data
with respect to model parameters 𝑾,𝒃.

linear layer

FC

softmaxparameters

𝐿

loss

Softmax𝐖,𝐛

Recap: Backpropagation (Backward Pass)

5linear layer

FC

softmaxparameters

𝐿

loss

Softmax

Gradient descent: ∆𝑊 = −𝛼	∇,𝐿(𝑊) and ∆𝒃 = −𝛼	∇,𝐿(𝒃)

Backpropagation: Compute ∆𝑊 and ∆𝒃 via chain rule.

𝐖,𝐛

𝑑𝐿
𝑑𝑝!

𝑑𝑝!
𝑑𝑙"

𝑑𝑙"
𝑑𝑤",$

𝑑𝐿
𝑑𝑤",$

=
𝑑𝑙"
𝑑𝑤",$

'
𝑑𝑝!
𝑑𝑙"

'
𝑑𝐿
𝑑𝑝!

Recap: Computation graph

6
Lazebnik

ℎ()*

ℎ(

Upstream
gradient:

+,
+-!

Downstream gradient:
+,

+-!"#
= +,

+-!
+-!
+-!"#

𝑓((ℎ()*, 𝑤()

𝑤(𝜕𝑒
𝜕𝑤(

=
𝜕𝑒
𝜕ℎ(

𝜕ℎ(
𝜕𝑤(

𝜕ℎ!
𝜕ℎ!"#

𝜕ℎ!
𝜕𝑤! Local gradient

Local gradient

Parameter update:

Forward pass
Backward pass

https://slazebni.cs.illinois.edu/spring22/

Today’s goal – learn about deep learning
frameworks

(1) Gradient Descent pseudocode

(2) Stochastic Gradient Descent (SGD)

(3) Automatic differentiation

Putting Everything Together: Gradient
Descent

8

delta_W is 2-D matrix of 0’s in the shape of W

for each input and corresponding answer a:

 probabilities = run_network(input)

 for j in range(len(probabilities)):

 y_j = 1 if j == a else 0

 for i in range(len(input):

 delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]

W += delta_W

Forward pass

Backward pass:
Compute $%

$&!"
 for every 𝑊'(

Over the entire dataset

Putting Everything Together: Gradient
Descent

9

delta_W is 2-D matrix of 0’s in the shape of W

for each input and corresponding answer a:

 probabilities = run_network(input)

 for j in range(len(probabilities)):

 y_j = 1 if j == a else 0

 for i in range(len(input):

 delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]

W += delta_W

Forward pass

Backward pass:
Compute $%

$&!"
 for every 𝑊'(

Over the entire dataset

Gradient descent update

Gradient Descent: Limitation?

10

delta_W is 2-D matrix of 0’s in the shape of W

for each input and corresponding answer a:

 probabilities = run_network(input)

 for j in range(len(probabilities)):

 y_j = 1 if j == a else 0

 for i in range(len(input):

 delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]

W += delta_W

We iterate over the entire dataset...

...to update the weights only once

Stochastic Gradient Descent (SGD)

• Alternative is to train on batches: small subsets of the training data
• Why stochastic: Each batch is randomly sampled from the full training

data
• We update the parameters after each batch

11

Stochastic Gradient Descent: Pseudocode

12

 # delta_W is 2-D matrix of 0’s in the shape of W

 for each input and corresponding answer a :

 probabilities = run_network(input)

 for j in range(len(probabilities)):

 y_j = 1 if j == a else 0

 for i in range(len(input):

 delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]

 W += delta_W

for each batch:

in batch

Stochastic Gradient Descent: Pseudocode

13

for each batch:

 # delta_W is 2-D matrix of 0’s in the shape of W

 for each input and corresponding answer a in batch:

 probabilities = run_network(input)

 for j in range(len(probabilities)):

 y_j = 1 if j == a else 0

 for i in range(len(input):

 delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]

 W += delta_W Now we update weights after every batch

Stochastic Gradient Descent (SGD)

• Train on batches: small subsets of the training data
• We update the parameters after each batch
• This makes the training process stochastic or non-deterministic: -

*batches are a random subsample of the data
*do not provide the gradient that the entire dataset as a whole
would provide at once

• Formally: the gradient of a randomly-sampled batch is an unbiased
estimator of the gradient over the whole dataset
• “Unbiased”: expected value == the true gradient, but may have large variance

(i.e. the gradient may ‘jitter around’ a lot)

14

What size should the batch be?

• Rule of thumb nowadays: Pick the largest batch size you can fit on your GPU!

15

Small batch size:
Fast, jittery updates

Large batch size:
Slower, stable updates

Epoch Epoch

Any questions?

Generalizing Backpropagation

16

linear layer

Σ

softmaxinput

𝐿𝜎

loss

Generalizing Backpropagation
• What if we want to add another layer to our model?
• Calculating derivatives by hand again is a lot of work L

17

linear layer

Σ

new layerinput

𝐿

loss

𝜎

softmax

Can the computers
do this for us?

Yes J

Computer-based Derivatives

• Numeric differentiation
• ./
.0
≈ / 01∆0)/(0)

∆0
• Pick a small step size ∆𝑥
• Also called “finite differences”

18

𝑦 = !
"
 ∆𝑥 = 0.5

Computer-based Derivatives

• Numeric differentiation
• ./
.0
≈ / 01∆0)/(0)

∆0
• Pick a small step size ∆𝑥
• Also called “finite differences”
• Easy to implement
• Arbitrarily inaccurate/unstable

19

real

approximation

Computer-based Derivatives

• Numeric differentiation
• Symbolic differentiation
• Computer “does algebra” and

simplifies expressions
• What Wolfram Alpha does

https://www.wolframalpha.com/

20

𝑑
𝑑𝑥 (6𝑥 + 3𝑥

%)

https://www.wolframalpha.com/

Computer-based Derivatives

• Numeric differentiation
• Symbolic differentiation
• Computer “does algebra” and

simplifies expressions
• What Wolfram Alpha does
• Exact (no approximation error)
• Complex to implement
• Only handles static expressions

(what about e.g. loops?)

• Example:

while abs(x) > 5:
x = x / 2

• This loop could run once or 100
times, it’s impossible to know

21

Computer-based Derivatives

• Numeric differentiation
• Symbolic differentiation
• Automatic differentiation
• Use the chain rule at runtime

22

𝑥 ℎ(𝑥) 𝑓(𝑔 ℎ 𝑥𝑔(ℎ 𝑥)

𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑ℎ

𝑑ℎ
𝑑𝑥

Chain Rule

Computer-based Derivatives

• Numeric differentiation
• Symbolic differentiation
• Automatic differentiation
• Use the chain rule at runtime
• Gives exact results
• Handles dynamics (loops, etc.)
• Easier to implement
• Can’t simplify expressions

• sin%𝑥 + cos%𝑥 ⇒ 1
• Automatic differentiation

doesn’t know this identity, will
end up evaluating the entire
expression on the left hand side

23

Computer-based Derivatives

• Numeric differentiation
• Symbolic differentiation
• Automatic differentiation
• Use the chain rule at runtime
• Gives exact results
• Handles dynamics (loops, etc.)
• Easier to implement
• Can’t simplify expressions
• What Tensorflow and PyTorch use

24

• sin%𝑥 + cos%𝑥 ⇒ 1
• Automatic differentiation

doesn’t know this identity, will
end up evaluating the entire
expression on the left hand side

Two Main “Flavors” of Autodiff

• Forward Mode Autodiff
• Compute derivatives alongside the program as it is running

• Reverse Mode Autodiff
• Run the program, then compute derivatives (in reverse order)

25

Two Main “Flavors” of Autodiff

• Forward Mode Autodiff
• Compute derivatives alongside the program as it is running

• Reverse Mode Autodiff
• Run the program, then compute derivatives (in reverse order)

26

Forward Mode Autodiff

• Given 𝑓 𝑥, 𝑦 = 𝑥% + log 𝑦

27

𝑥

𝑦

Function inputs

Forward Mode Autodiff

• Given 𝑓 𝑥, 𝑦 = 𝑥% + log 𝑦

28

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦

Forward Mode Autodiff

• Given 𝑓 𝑥, 𝑦 = 𝑥% + log 𝑦

29

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

A computation graph

What is the chain rule for !"
!#
𝑎𝑛𝑑 !"

!$
?

30

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

Forward Mode Autodiff

• Idea: Augment each node...

31

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

Forward Mode Autodiff

• ...with functions that compute derivatives

32

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑐
𝜕𝑥

= 2𝑥

𝜕𝑏
𝜕𝑦

=
1
𝑦

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑏 = log 𝑦

𝜕𝑏
𝜕𝑦

=
1
𝑦

Forward Mode Autodiff

• Then, keep track of derivatives as you compute:

33

𝑥

𝑦

𝑐

𝑏

𝑒

𝑑𝑥
𝑑𝑥

= 1
𝑐 = 𝑥%

𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑐
𝜕𝑥

= 2𝑥

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑏 = log 𝑦

𝜕𝑏
𝜕𝑦

=
1
𝑦

Forward Mode Autodiff

• Then, keep track of derivatives as you compute:

34

𝑥

𝑦 𝑏

𝑒

𝑐 = 𝑥%

𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑐
𝜕𝑥

= 2𝑥

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑑𝑐
𝑑𝑥 .

𝑑𝑥
𝑑𝑥 = 2𝑥 . 1 = 2𝑥

𝑑𝑥
𝑑𝑥

= 1

𝑐

𝑏 = log 𝑦

𝜕𝑏
𝜕𝑦

=
1
𝑦

Forward Mode Autodiff

• Then, keep track of derivatives as you compute:

35

𝑥

𝑦 𝑏

𝑐 = 𝑥%

𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑐
𝜕𝑥

= 2𝑥

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑑𝑐
𝑑𝑥 .

𝑑𝑥
𝑑𝑥 = 2𝑥 . 1 = 2𝑥

𝑑𝑥
𝑑𝑥

= 1

𝑐

𝑒
𝑑𝑒
𝑑𝑐
.
𝑑𝑐
𝑑𝑥

.
𝑑𝑥
𝑑𝑥

= 1 . 2𝑥 = 2𝑥

𝑐 = 𝑥%

𝜕𝑐
𝜕𝑥

= 2𝑥

Forward Mode Autodiff

• Can do the same thing starting from the second input:

36

𝑥

𝑦

𝑐

𝑏

𝑒

𝑑𝑦
𝑑𝑦 = 1

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑏
𝜕𝑦

=
1
𝑦

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑐 = 𝑥%

𝜕𝑐
𝜕𝑥

= 2𝑥

Forward Mode Autodiff

• Can do the same thing starting from the second input:

37

𝑥

𝑦

𝑐

𝑒

𝑑𝑦
𝑑𝑦 = 1

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑏
𝜕𝑦

=
1
𝑦

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑑𝑏
𝑑𝑦

.
𝑑𝑦
𝑑𝑦

=
1
𝑦
. 1 =

1
𝑦

𝑏

𝑐 = 𝑥%

𝜕𝑐
𝜕𝑥

= 2𝑥

Forward Mode Autodiff

• Can do the same thing starting from the second input:

38

𝑥

𝑦

𝑐

𝑑𝑦
𝑑𝑦 = 1

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑏
𝜕𝑦

=
1
𝑦

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

𝑑𝑏
𝑑𝑦

.
𝑑𝑦
𝑑𝑦

=
1
𝑦
. 1 =

1
𝑦

𝑒

𝑏

𝑑𝑒
𝑑𝑏

.
𝑑𝑏
𝑑𝑦

.
𝑑𝑦
𝑑𝑦

= 1 ⋅
1
𝑦

=
1
𝑦

Forward Mode Autodiff

• We can think of each node...

39

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

𝜕𝑐
𝜕𝑥

= 2𝑥

𝜕𝑏
𝜕𝑦

=
1
𝑦

𝜕𝑒
𝜕𝑐 = 1	

𝜕𝑒
𝜕𝑏 = 1

Forward Mode Autodiff

• ...as operating on a (value, derivative) tuple:

40

𝑥

𝑦

𝑐

𝑏

(𝑐, &'
&(
) = (𝑥%, 2𝑥)

(𝑏,
𝑑𝑏
𝑑𝑦) = (log 𝑦,

1
𝑦)

𝑒
(𝑒,
𝑑𝑒
𝑑𝑐) = 𝑐 + 𝑏, 1

(𝑒,
𝑑𝑒
𝑑𝑏
) = 𝑐 + 𝑏, 1

These tuples are
called dual numbers(𝑥, &(

&(
) = (𝑥 , 1)

(𝑦, &)
&)
) = (𝑦 , 1)

Any questions?

Problems w/ Forward Mode for our use case

• For 𝑓: ℝ → ℝ' (1 input to n outputs) we can differentiate in one pass
• For 𝑓:ℝ' →ℝ (n inputs to 1 output) we need 𝑛 passes

41

𝑓: 	ℝ → ℝ* 𝑓:ℝ* → ℝ

𝑁 = number of input features to the network, K =	number of nodes in the graph

Can you calculate the
time and memory
complexity?

these derivatives
are being
calculated

multiple times

Problems w/ Forward Mode for our use case

• For 𝑓: ℝ → ℝ' (1 input to n outputs) we can differentiate in one pass
• For 𝑓:ℝ' →ℝ (n inputs to 1 output) we need 𝑛 passes

42

𝑓: 	ℝ → ℝ* 𝑓:ℝ* → ℝ

these derivatives
are being
calculated

multiple times

𝑁 = number of input features to the network, K =	number of nodes in the graph

Forward mode: 𝑂(𝑁 ∗ 𝐾) time, 𝑂(1) memory

Can you calculate the
time and memory
complexity?

Two Main “Flavors” of Autodiff

• Forward Mode Autodiff
• Compute derivatives alongside the program as it is running

• Reverse Mode Autodiff
• Run the program, then compute derivatives (in reverse order)

43

Reverse Mode Autodiff

• Idea: first, run the function forward to produce the graph
• 𝑓 𝑥, 𝑦 = 𝑥% + log 𝑦

44

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the
inputs

45

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	

Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the
inputs

46

𝑥

𝑦

𝑐

𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the
inputs

47

𝑥

𝑦 𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

𝑐
𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑 𝑐 + 𝑏
𝑑𝑐 . 1 = 1

Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the
inputs

48

𝑦 𝑏

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

𝑐
𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑 𝑐 + 𝑏
𝑑𝑐 . 1 = 1

𝑥
𝑑𝑐
𝑑𝑥 .

𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑(𝑥!)
𝑑𝑥 . 1 = 2𝑥

Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the
inputs

49

𝑦

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

𝑐
𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑 𝑐 + 𝑏
𝑑𝑐 . 1 = 1

𝑥
𝑑𝑐
𝑑𝑥 .

𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑(𝑥!)
𝑑𝑥 . 1 = 2𝑥

𝑏
𝑑𝑒
𝑑𝑏

.
𝑑𝑒
𝑑𝑒

=
𝑑 𝑐 + 𝑏
𝑑𝑏

. 1 = 1

Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the
inputs

50

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

𝑐
𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑 𝑐 + 𝑏
𝑑𝑐 . 1 = 1

𝑥
𝑑𝑐
𝑑𝑥 .

𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑(𝑥!)
𝑑𝑥 . 1 = 2𝑥

𝑏
𝑑𝑒
𝑑𝑏

.
𝑑𝑒
𝑑𝑒

=
𝑑 𝑐 + 𝑏
𝑑𝑏

. 1 = 1

𝑦
𝑑𝑏
𝑑𝑦 .

𝑑𝑒
𝑑𝑏 .

𝑑𝑒
𝑑𝑒 =

𝑑 log 𝑦
𝑑𝑦 . 1 =

1
𝑦

𝑁 = number of input features to the network, K =	number of nodes in the graph

Can you calculate the time and
memory complexity?

Reverse Mode Autodiff

• Then, compute derivatives backward from the final node toward the
inputs

51

𝑐 = 𝑥%

𝑏 = log 𝑦
𝑒 = 𝑐 + 𝑏 = 𝑥% + log 𝑦	𝑒

𝑑𝑒
𝑑𝑒 = 1

𝑐
𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑 𝑐 + 𝑏
𝑑𝑐 . 1 = 1

𝑥
𝑑𝑐
𝑑𝑥 .

𝑑𝑒
𝑑𝑐 .

𝑑𝑒
𝑑𝑒 =

𝑑(𝑥!)
𝑑𝑥 . 1 = 2𝑥

𝑏
𝑑𝑒
𝑑𝑏

.
𝑑𝑒
𝑑𝑒

=
𝑑 𝑐 + 𝑏
𝑑𝑏

. 1 = 1

𝑦
𝑑𝑏
𝑑𝑦 .

𝑑𝑒
𝑑𝑏 .

𝑑𝑒
𝑑𝑒 =

𝑑 log 𝑦
𝑑𝑦 . 1 =

1
𝑦

𝑁 = number of input features to the network, K =	number of nodes in the graph

𝑂(𝐾) time, 𝑂(𝐾) memory

Reverse Mode Autodiff is Time Efficient

• Forward mode: 𝑂(𝑁 ∗ 𝐾) time, 𝑂(1) memory
• 𝑁 = number of inputs features to the network,
• 𝐾 = number of nodes in the graph

• Reverse mode: 𝑂(𝐾) time, 𝑂(𝐾) memory

• The memory cost comes from having to keep the entire graph from
the forward pass in order to then differentiate backwards

52

Any questions?

Recap Gradient Descent pseudocode

Stochastic Gradient Descent

Batching

Computer based
derivatives

Deep
Learning
Frameworks

𝑥 ℎ(𝑥) 𝑓(𝑔 ℎ 𝑥𝑔(ℎ 𝑥)

𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑ℎ

𝑑ℎ
𝑑𝑥

Chain RuleNumeric differentiation

Symbolic differentiation

Automatic differentiation (Autodiff)
(1) Forward mode
(2) Reverse mode

