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Multi-layer NNs + Activation

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”



Recap Neural networks as matrix 
operations

Batching and Broadcasting 

Intro to Tensorflow



Today’s goal – learn to build multi-layer neural 
networks

(1) Adding more layers to the network

(2) Introducing non-linearity (Activation functions)

(3) Multi-layer neural network with non-linearity
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This network can 
achieve ~90% 
accuracy on the 
MNIST test set

linear 
layer

	Σ

softmaxinput

Single Layer Fully Connected Feed Forward Neural Network
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How can we do better?
Go deeper!

linear 
layer

	Σ

softmaxinput

Single Layer Fully Connected Feed Forward Neural Network

This network can 
achieve ~90% 
accuracy on the 
MNIST test set



Multi-layer Neural Networks

• Each new layer adds another 
function to the network
• 𝑓 𝑔 ℎ …𝑧 𝑥 …
• More composed functions à can 

represent more complex 
computations

• Each new layer has its own 
tunable parameters
• More parameters to tune à can 

capture more complex patterns in the 
data
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One Way to Make a Multi-layer Network
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One Way to Make a Multi-layer Network

Obvious idea: just stack more linear layers
Let’s examine the consequences of this design decision...
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softmaxinput
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Single-Layer Network (in math)
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𝜎 𝑤! 𝑏!
𝑥
1

linear 
layer
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softmaxinput



Multi-Layer Network (in math)
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𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

linear 
layer

	Σ

softmaxinput

	Σ

linear 
layer

Let’s simplify this a bit...



Simplifying multi-layer math...
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𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1



Simplifying multi-layer math...

Apply associativity…

Multiply the matrices...
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𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

𝜎 𝑤"! 𝑏"!
𝑥
1



Simplifying multi-layer math...

Apply associativity…

Multiply the matrices...
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𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

𝜎 𝑤"! 𝑏"!
𝑥
1

𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

Same as a one-layer 
network



Takeaway: Stacking Linear Layers Isn’t Enough
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linear 
layer
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softmaxinput

	Σ

linear 
layer

Combination of linear 
functions is another linear 

function.

Why is this a problem?



Linear functions may not be sufficient
• Root cause of our problem: a composition of linear functions is still linear
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Temperature (𝕏)
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Any questions?
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Incorporate non-linearity - Activation 
Functions
• Root cause of our problem: a composition of linear functions is still linear
• Need some kind of nonlinear function between each linear layer. 
• Called an activation function

• Origin of the name: a neuron “activates” if it gets enough electrochemical input
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softmaxlinear 
layer
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activationinput
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linear 
layer



What is a good activation function?

• How about 𝑎 𝑥 = 𝑥!?

• Linear à Quadratic

• Let’s examine the consequences of this 
design decision

• In particular, let’s look at what happens 
to the gradient
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Can you think of a simple 
non-linear function?



Recall: Single-layer network gradient

Let’s look at the partial derivative of logits 
#$!
#%!,#

Recall:

𝑙& = 𝑊&,(𝑥( +𝑊&,)𝑥)…+𝑊&,*𝑥* + 𝑏&
=(

*
𝑊&,* 𝑥* + 𝑏&

So:

𝜕 ∑𝑊&,* 𝑥* + 𝑏*
𝜕𝑤&,*

= 𝑥*
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Recall: Single-layer network gradient

Let’s look at the partial derivative of logits 
#$!
#%!,#

Recall:

𝑙& = 𝑊&,(𝑥( +𝑊&,)𝑥) +⋯+𝑊&,*𝑥* + 𝑏&
=(

*
𝑊&,* 𝑥* + 𝑏&

So:

𝜕 ∑𝑊&,* 𝑥* + 𝑏*
𝜕𝑤&,*

= 𝑥*
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Recall: Single-layer network gradient

Let’s look at the partial derivative of logits 
#$!
#%!,#

Recall:

𝑙& = 𝑊&,(𝑥( +𝑊&,)𝑥) +⋯+𝑊&,*𝑥* + 𝑏&
=(

*
𝑊&,* 𝑥* + 𝑏&

So:

𝜕 ∑*𝑊&,* 𝑥* + 𝑏*
𝜕𝑤&,+

= 𝑥+
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input



Now add our activation function

Let 𝑎 𝑙" or	𝑎" = 𝑙"
!

Our goal is to calculate 
#$!
#%!,#

22linear 
layer

	Σ

activationinput
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Now add our activation function

Remember the chain rule:

𝜕𝑎#
𝜕𝑤#,%

=
𝜕𝑎#
𝜕𝑙#

*
𝜕𝑙#
𝜕𝑤#,%

23linear 
layer
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activationinput

𝑎



Now add our activation function

𝜕𝑎#
𝜕𝑤#,%

=
𝜕𝑎#
𝜕𝑙#

*
𝜕𝑙#
𝜕𝑤#,%

𝜕𝑎#
𝜕𝑤#,%

=
𝜕 𝑙#

!

𝜕𝑙#
* 𝑥%

24linear 
layer
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activationinput
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Now add our activation function

𝜕𝑎#
𝜕𝑤#,%

=
𝜕𝑎#
𝜕𝑙#

*
𝜕𝑙#
𝜕𝑤#,%

𝜕𝑎#
𝜕𝑤#,%

=
𝜕 𝑙#

!

𝜕𝑙#
* 𝑥%

𝜕𝑎#
𝜕𝑤#,%

= 2𝑙 * 𝑥%

25linear 
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Uh oh, we have a problem...

Previous Gradient

𝜕𝑙"
𝜕𝑤",$

= 𝑥$

New Gradient

𝜕𝑎"
𝜕𝑤",$

= 2𝑙 - 𝑥$
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New gradient is, in general, larger in magnitude
With more layers, gradient gets bigger and bigger...

Known as the Exploding Gradient Problem



Consequences of Exploding Gradients

Remember the update rule for SGD:

So if our gradient gets really big, we need a very small learning rate 𝛼

: Not a good activation function!
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∆𝑤",$ = −𝛼 -
𝜕𝐿
𝜕𝑤",$

𝑎 𝑥 = 𝑥! Any questions?
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The Sigmoid Activation Function

𝜎 𝑥 =
1

1 + 𝑒!"
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Have I mentioned this 
function before?



The Sigmoid Activation Function

• Historically very popular 
activation function

• Takes real value and squashes it 
to range between 0 and 1
• i.e. 𝜎 𝑥 : ℝ → (0, 1)
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𝜎 𝑥 =
1

1 + 𝑒%&



The Sigmoid Activation Function

• Large negative numbers become 
0 and large positive numbers 
become 1

• Bounded: guarantees gradient 
cannot grow without bound!!
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𝜎 𝑥 =
1

1 + 𝑒%&



Another “Sigmoidal” function: Tanh

tanh 𝑥 =
𝑒, − 𝑒-,

𝑒, + 𝑒-,
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The hyperbolic tangent function



Tanh

• Output range: [−1,1]
• Versus sigmoid 0,1

• Somewhat desirable property of 
keeping the signal that passes 
through the network “centered” 
around zero.
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tanh 𝑥 =
𝑒& − 𝑒%&

𝑒& + 𝑒%&

Do you see any issues 
with these functions? 

(Think about the 
gradients!) 



But we’re still not out of the woods...
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• The bounded-ness of these functions is a double-edged sword
• Why? Being bounded means that the function has asymptotes, which have 

zero derivative in the limit.

𝜎(𝑥) =
1

1 + 𝑒!"



But we’re still not out of the woods...
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• So, our derivatives don’t grow out of control...
• ...but the price we pay is that they approach zero, and

the network stops learning
• Known as the Vanishing Gradient Problem

𝜎(𝑥) =
1

1 + 𝑒!"



Consequences of Vanishing Gradients
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• Problem is exacerbated by stacking multiple layers (gradients shrink 
more the deeper you go)

• Led to the belief that in practice, neural nets could only ever be a few 
layers deep...

Any questions?
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Enter the Rectifier Function

• Nonlinear — cannot be represented as: 𝑎 𝑥 + 𝑏
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𝑓 𝑥 = 7𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒



More commonly known as ReLU

• Rectified Linear Unit
• Technically: Linear layer followed by the rectifier function
• But in most contexts, you will see the rectifier function called “ReLU”
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Σ 𝑟

Rectified Linear Unit



Advantages of ReLU

• Does not suffer from vanishing or exploding gradients!
• Super computationally efficient (avoids the exp calls in sigmoid/tanh)
• Most popular, de-facto ‘standard’ activation function
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Σ 𝑟

Rectified Linear Unit
𝑓 𝑥 = /𝑥, 𝑥 > 0

0, 	 𝑒𝑙𝑠𝑒

ReLU 𝑥 = max 0, 𝑥



But not even ReLU is perfect...

• We said that the zero-derivative 
asymptotes of sigmoid were a 
problem...
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𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

Do we see any issues 
here?



But not even ReLU is perfect...

• We said that the zero-derivative 
asymptotes of sigmoid were a 
problem...

• Check out this huge zero-derivative 
region
• Effectively: layers that feed into this 

activation don’t learn anything if they 
feed negative values
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𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒



But not even ReLU is perfect...

• Not such a big deal if the previous 
layer just occasionally produces 
negative values
• Some people even claim this as a 

“feature,” in that the resulting ‘sparse 
activations’ in the network more 
closely resemble what the human 
brain does

• But what if the previous layer always
produces negative values?

• Is this even possible?
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𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒



But not even ReLU is perfect...

• The value fed into ReLU:
• 𝑙& = ∑*𝑊&,* 𝑥* + 𝑏&
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𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

Thinking activity: How 
could we always get 

negative values?



But not even ReLU is perfect...

• The value fed into ReLU:
• 𝑙& = ∑*𝑊&,* 𝑥* + 𝑏&

• If our inputs 𝑥6 are bounded (e.g. 
[0,1]), then the following is 
possible:

• The weights have small magnitude
• The bias is a large negative number

• In this case, 𝑙" will always be 
negative!
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𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

Known as the Dead ReLU problem



But not even ReLU is perfect...

• Does this ever happen in practice?

• Yes! A large gradient update can 
‘accidentally’ knock the parameters 
into a state where this happens.

• Known cases where as much as 40% 
of the network suffers from this
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𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

Known as the Dead ReLU problem

http://cs231n.github.io/neural-networks-1/
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Leaky ReLU

• Fix — we give a tiny positive slope for negative inputs
• Some activation “leaks” through the barrier

𝑓 𝑥 = :𝑥, 𝑥 > 0
𝑎𝑥, 𝑒𝑙𝑠𝑒
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LeakyReLU 𝑥 = max 0, 𝑥 + 𝑎 ∗ min(0, 𝑥)



Refer: https://www.blog.dailydoseofds.com/p/a-visual-and-intuitive-guide-to-what\

Non-linearity as piecewise-linearity

https://www.blog.dailydoseofds.com/p/a-visual-and-intuitive-guide-to-what/


Other Activation Functions
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Great PyTorch documentation here!

Why use other activation 
functions?

https://pytorch.org/docs/stable/nn.html


Reasons to use other activation functions 

• Bounding network outputs to a particular range
• Tanh: [-1, 1]
• Sigmoid: [0,1]
• Softplus: [0, ∞]

• Example: Predicting a person’s age from other biological features
• Age is a strictly positive quantity
• We can help our network learn by restricting it to output only positive 

numbers
• Use a Softplus activation on the output
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Any questions?



Building a multi-layer network

• Previously:

52
linear layer

	Σ

softmaxinput

1x784 784x10 10x1



Consequences of adding activation layers

• Previously: • Now:
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linear layer

	Σ

softmaxinput

1x784 784x10 10x1

softmax

784×?

	Σ

input

Σ𝑎

?×10

layer 1 layer 2

1x784 10x1

What dimension to use here??



Recap More layers à more 
complicated function

Linear layers are not sufficient!

Need non-linearity 

Stacking multiple 
layers

Exploding gradients

Vanishing gradients

ReLU, Leaky ReLU

Activation 
functions


