
Deep Learning
CSCI 1470/2470

Spring 2024

Ritambhara Singh

February 12, 2024
Monday

Multi-layer NNs + Activation

ChatGPT prompt “minimalist landscape painting of a deep underwater scene with a blue tang fish in the bottom right corner”

Recap Neural networks as matrix
operations

Batching and Broadcasting

Intro to Tensorflow

Today’s goal – learn to build multi-layer neural
networks

(1) Adding more layers to the network

(2) Introducing non-linearity (Activation functions)

(3) Multi-layer neural network with non-linearity

4

This network can
achieve ~90%
accuracy on the
MNIST test set

linear
layer

	Σ

softmaxinput

Single Layer Fully Connected Feed Forward Neural Network

5

How can we do better?
Go deeper!

linear
layer

	Σ

softmaxinput

Single Layer Fully Connected Feed Forward Neural Network

This network can
achieve ~90%
accuracy on the
MNIST test set

Multi-layer Neural Networks

• Each new layer adds another
function to the network
• 𝑓 𝑔 ℎ …𝑧 𝑥 …
• More composed functions à can

represent more complex
computations

• Each new layer has its own
tunable parameters
• More parameters to tune à can

capture more complex patterns in the
data

6

linear
layer

	Σ

softmaxinput

One Way to Make a Multi-layer Network

7

linear
layer

	Σ

softmaxinput

	Σ

linear
layer

One Way to Make a Multi-layer Network

Obvious idea: just stack more linear layers
Let’s examine the consequences of this design decision...

8

linear
layer

	Σ

softmaxinput

	Σ

linear
layer

Single-Layer Network (in math)

9

𝜎 𝑤! 𝑏!
𝑥
1

linear
layer

	Σ

softmaxinput

Multi-Layer Network (in math)

10

𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

linear
layer

	Σ

softmaxinput

	Σ

linear
layer

Let’s simplify this a bit...

Simplifying multi-layer math...

11

𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

Simplifying multi-layer math...

Apply associativity…

Multiply the matrices...

12

𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

𝜎 𝑤"! 𝑏"!
𝑥
1

Simplifying multi-layer math...

Apply associativity…

Multiply the matrices...

13

𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

𝜎 𝑤"! 𝑏"!
𝑥
1

𝜎 𝑤! 𝑏! 𝑤" 𝑏"
𝑥
1

Same as a one-layer
network

Takeaway: Stacking Linear Layers Isn’t Enough

14

linear
layer

	Σ

softmaxinput

	Σ

linear
layer

Combination of linear
functions is another linear

function.

Why is this a problem?

Linear functions may not be sufficient
• Root cause of our problem: a composition of linear functions is still linear

15

Temperature (𝕏)

Pr
of

it
(𝕐

)

Temperature (𝕏)

Pr
of

it
(𝕐

)

Any questions?

16

Incorporate non-linearity - Activation
Functions
• Root cause of our problem: a composition of linear functions is still linear
• Need some kind of nonlinear function between each linear layer.
• Called an activation function

• Origin of the name: a neuron “activates” if it gets enough electrochemical input

17

softmaxlinear
layer

	Σ

activationinput

	Σ𝑎

linear
layer

What is a good activation function?

• How about 𝑎 𝑥 = 𝑥!?

• Linear à Quadratic

• Let’s examine the consequences of this
design decision

• In particular, let’s look at what happens
to the gradient

18

Can you think of a simple
non-linear function?

Recall: Single-layer network gradient

Let’s look at the partial derivative of logits
#$!
#%!,#

Recall:

𝑙& = 𝑊&,(𝑥(+𝑊&,)𝑥)…+𝑊&,*𝑥* + 𝑏&
=(

*
𝑊&,* 𝑥* + 𝑏&

So:

𝜕 ∑𝑊&,* 𝑥* + 𝑏*
𝜕𝑤&,*

= 𝑥*

19

Recall: Single-layer network gradient

Let’s look at the partial derivative of logits
#$!
#%!,#

Recall:

𝑙& = 𝑊&,(𝑥(+𝑊&,)𝑥) +⋯+𝑊&,*𝑥* + 𝑏&
=(

*
𝑊&,* 𝑥* + 𝑏&

So:

𝜕 ∑𝑊&,* 𝑥* + 𝑏*
𝜕𝑤&,*

= 𝑥*

20

linear
layer

	Σ

input

Recall: Single-layer network gradient

Let’s look at the partial derivative of logits
#$!
#%!,#

Recall:

𝑙& = 𝑊&,(𝑥(+𝑊&,)𝑥) +⋯+𝑊&,*𝑥* + 𝑏&
=(

*
𝑊&,* 𝑥* + 𝑏&

So:

𝜕 ∑*𝑊&,* 𝑥* + 𝑏*
𝜕𝑤&,+

= 𝑥+

21

linear
layer

	Σ

input

Now add our activation function

Let 𝑎 𝑙" or	𝑎" = 𝑙"
!

Our goal is to calculate
#$!
#%!,#

22linear
layer

	Σ

activationinput

𝑎

Now add our activation function

Remember the chain rule:

𝜕𝑎#
𝜕𝑤#,%

=
𝜕𝑎#
𝜕𝑙#

*
𝜕𝑙#
𝜕𝑤#,%

23linear
layer

	Σ

activationinput

𝑎

Now add our activation function

𝜕𝑎#
𝜕𝑤#,%

=
𝜕𝑎#
𝜕𝑙#

*
𝜕𝑙#
𝜕𝑤#,%

𝜕𝑎#
𝜕𝑤#,%

=
𝜕 𝑙#

!

𝜕𝑙#
* 𝑥%

24linear
layer

	Σ

activationinput

𝑎

Now add our activation function

𝜕𝑎#
𝜕𝑤#,%

=
𝜕𝑎#
𝜕𝑙#

*
𝜕𝑙#
𝜕𝑤#,%

𝜕𝑎#
𝜕𝑤#,%

=
𝜕 𝑙#

!

𝜕𝑙#
* 𝑥%

𝜕𝑎#
𝜕𝑤#,%

= 2𝑙 * 𝑥%

25linear
layer

	Σ

activationinput

𝑎

Uh oh, we have a problem...

Previous Gradient

𝜕𝑙"
𝜕𝑤",$

= 𝑥$

New Gradient

𝜕𝑎"
𝜕𝑤",$

= 2𝑙 - 𝑥$

26

New gradient is, in general, larger in magnitude
With more layers, gradient gets bigger and bigger...

Known as the Exploding Gradient Problem

Consequences of Exploding Gradients

Remember the update rule for SGD:

So if our gradient gets really big, we need a very small learning rate 𝛼

: Not a good activation function!

27

∆𝑤",$ = −𝛼 -
𝜕𝐿
𝜕𝑤",$

𝑎 𝑥 = 𝑥! Any questions?

28

The Sigmoid Activation Function

𝜎 𝑥 =
1

1 + 𝑒!"

29

Have I mentioned this
function before?

The Sigmoid Activation Function

• Historically very popular
activation function

• Takes real value and squashes it
to range between 0 and 1
• i.e. 𝜎 𝑥 : ℝ → (0, 1)

30

𝜎 𝑥 =
1

1 + 𝑒%&

The Sigmoid Activation Function

• Large negative numbers become
0 and large positive numbers
become 1

• Bounded: guarantees gradient
cannot grow without bound!!

31

𝜎 𝑥 =
1

1 + 𝑒%&

Another “Sigmoidal” function: Tanh

tanh 𝑥 =
𝑒, − 𝑒-,

𝑒, + 𝑒-,

32

The hyperbolic tangent function

Tanh

• Output range: [−1,1]
• Versus sigmoid 0,1

• Somewhat desirable property of
keeping the signal that passes
through the network “centered”
around zero.

33

tanh 𝑥 =
𝑒& − 𝑒%&

𝑒& + 𝑒%&

Do you see any issues
with these functions?

(Think about the
gradients!)

But we’re still not out of the woods...

34

• The bounded-ness of these functions is a double-edged sword
• Why? Being bounded means that the function has asymptotes, which have

zero derivative in the limit.

𝜎(𝑥) =
1

1 + 𝑒!"

But we’re still not out of the woods...

35

• So, our derivatives don’t grow out of control...
• ...but the price we pay is that they approach zero, and

the network stops learning
• Known as the Vanishing Gradient Problem

𝜎(𝑥) =
1

1 + 𝑒!"

Consequences of Vanishing Gradients

36

• Problem is exacerbated by stacking multiple layers (gradients shrink
more the deeper you go)

• Led to the belief that in practice, neural nets could only ever be a few
layers deep...

Any questions?

37

Enter the Rectifier Function

• Nonlinear — cannot be represented as: 𝑎 𝑥 + 𝑏

38

𝑓 𝑥 = 7𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

More commonly known as ReLU

• Rectified Linear Unit
• Technically: Linear layer followed by the rectifier function
• But in most contexts, you will see the rectifier function called “ReLU”

39

Σ 𝑟

Rectified Linear Unit

Advantages of ReLU

• Does not suffer from vanishing or exploding gradients!
• Super computationally efficient (avoids the exp calls in sigmoid/tanh)
• Most popular, de-facto ‘standard’ activation function

40

Σ 𝑟

Rectified Linear Unit
𝑓 𝑥 = /𝑥, 𝑥 > 0

0, 	 𝑒𝑙𝑠𝑒

ReLU 𝑥 = max 0, 𝑥

But not even ReLU is perfect...

• We said that the zero-derivative
asymptotes of sigmoid were a
problem...

41

𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

Do we see any issues
here?

But not even ReLU is perfect...

• We said that the zero-derivative
asymptotes of sigmoid were a
problem...

• Check out this huge zero-derivative
region
• Effectively: layers that feed into this

activation don’t learn anything if they
feed negative values

42

𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

But not even ReLU is perfect...

• Not such a big deal if the previous
layer just occasionally produces
negative values
• Some people even claim this as a

“feature,” in that the resulting ‘sparse
activations’ in the network more
closely resemble what the human
brain does

• But what if the previous layer always
produces negative values?

• Is this even possible?

43

𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

But not even ReLU is perfect...

• The value fed into ReLU:
• 𝑙& = ∑*𝑊&,* 𝑥* + 𝑏&

44

𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

Thinking activity: How
could we always get

negative values?

But not even ReLU is perfect...

• The value fed into ReLU:
• 𝑙& = ∑*𝑊&,* 𝑥* + 𝑏&

• If our inputs 𝑥6 are bounded (e.g.
[0,1]), then the following is
possible:

• The weights have small magnitude
• The bias is a large negative number

• In this case, 𝑙" will always be
negative!

45

𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

Known as the Dead ReLU problem

But not even ReLU is perfect...

• Does this ever happen in practice?

• Yes! A large gradient update can
‘accidentally’ knock the parameters
into a state where this happens.

• Known cases where as much as 40%
of the network suffers from this

46

𝑓 𝑥 = /𝑥, 𝑥 > 0
0, 	 𝑒𝑙𝑠𝑒

Known as the Dead ReLU problem

http://cs231n.github.io/neural-networks-1/

47

Leaky ReLU

• Fix — we give a tiny positive slope for negative inputs
• Some activation “leaks” through the barrier

𝑓 𝑥 = :𝑥, 𝑥 > 0
𝑎𝑥, 𝑒𝑙𝑠𝑒

48

LeakyReLU 𝑥 = max 0, 𝑥 + 𝑎 ∗ min(0, 𝑥)

Refer: https://www.blog.dailydoseofds.com/p/a-visual-and-intuitive-guide-to-what\

Non-linearity as piecewise-linearity

https://www.blog.dailydoseofds.com/p/a-visual-and-intuitive-guide-to-what/

Other Activation Functions

50

Great PyTorch documentation here!

Why use other activation
functions?

https://pytorch.org/docs/stable/nn.html

Reasons to use other activation functions

• Bounding network outputs to a particular range
• Tanh: [-1, 1]
• Sigmoid: [0,1]
• Softplus: [0, ∞]

• Example: Predicting a person’s age from other biological features
• Age is a strictly positive quantity
• We can help our network learn by restricting it to output only positive

numbers
• Use a Softplus activation on the output

51

Any questions?

Building a multi-layer network

• Previously:

52
linear layer

	Σ

softmaxinput

1x784 784x10 10x1

Consequences of adding activation layers

• Previously: • Now:

53
linear layer

	Σ

softmaxinput

1x784 784x10 10x1

softmax

784×?

	Σ

input

Σ𝑎

?×10

layer 1 layer 2

1x784 10x1

What dimension to use here??

Recap More layers à more
complicated function

Linear layers are not sufficient!

Need non-linearity

Stacking multiple
layers

Exploding gradients

Vanishing gradients

ReLU, Leaky ReLU

Activation
functions

